Chemistry 1094 Spring 2017 Test 3

Name: \qquad
Time: 1 hour 50 minutes

Student \#: \qquad

This test consists of six pages of questions and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me immediately. There are 43 marks available. Good luck!

Avogadro's number, should you need it, is $6.022140857 \times 10^{23} \mathrm{~mol}^{-1}$

1) [6 marks] Complete and balance the following reactions. Give the phases of all products.
a) \qquad $\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{~s}) \xrightarrow{\Delta}$
b) \qquad $\mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})+$ \qquad $\mathrm{CO}_{2}(\mathrm{~g}) \xrightarrow[\text { pressure }]{\text { high }}$
c) \qquad $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}(\mathrm{I})+$ \qquad $\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow$
2) [1 mark] Calculate the molar mass of $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$.
3) [14 marks total] Note: to receive any credit for any part of this question, you must show the complete method by which you obtained your solution.
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ has a molar mass of 142.0 grams.
a) [1 mark] How many grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ are necessary to supply 0.0500 moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$?
b) [1 mark] How many moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ are in 5.68 grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$?
c) [1 mark] How many moles of oxygen atoms are in 0.0200 moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$?
d) [1 mark] How many moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ are necessary to supply 0.100 moles of oxygen atoms?
e) [2 marks] How many grams of sodium atoms are in 0.160 moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$?
f) [2 marks] How many moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ are necessary to supply 1.1495 grams of sodium atoms?
g) [3 marks] How many grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ are necessary to supply 3.011×10^{20} atoms of sodium?
h) [$\mathbf{3}$ marks] How many sodium atoms are contained in 1.42 grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$? (Give the actual number and not just a multiple of moles.)
4) [1 mark] Calculate the mass of a single atom of sodium in grams.
5) [4 marks] Calculate the percent by mass of each element in $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}$.
6) [5 marks total] Glucose (an important source of energy) is 40.002 \% carbon, 53.285 \% oxygen, and the rest hydrogen (all by mass).
a) [3 marks] What is the empirical formula of glucose?
b) [2 marks] The molar mass of glucose is $\mathbf{1 8 0 . 1 5 7}$ grams. What is the molecular formula of glucose?
7) [6 marks] A 5.844-gram sample of $\mathrm{NaCl}(58.44 \mathrm{~g} / \mathrm{mol})$ was dissolved in enough water to make 250.0 mL of solution \mathbf{A}. A $15.00-\mathrm{mL}$ aliquot of solution \mathbf{A} was taken and diluted to 200.0 mL to form solution \mathbf{B}. Some solution \mathbf{B} was then taken and diluted to 250.0 mL to form solution \mathbf{C}. The concentration of solution \mathbf{C} was found to be $1.200 \times 10^{-3} \mathrm{M}$.
a) What was the concentration of solution \mathbf{A} ? Give your answer in moles/L.
b) What was the concentration of solution B? Give your answer in moles/L.
c) How many mL of solution \mathbf{B} were used to make solution \mathbf{C} ?
8) [6 marks] It took 22.62 mL of 0.1084 M NaOH to titrate a 15.00 mL aliquot of $\mathrm{H}_{2} \mathrm{SO}_{4}$: $2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
a) What was the $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$ in the original aliquot? Give your answer in moles/L.
b) What was the $\left[\mathrm{Na}_{2} \mathrm{SO}_{4}\right]$ after the titration was complete? Give your answer in moles/L.
