Chemistry 1094 Spring 2017 Test 3

Wednesday, March 22, 2017

Time: 1 hour 50 minutes

Name: ANSWERS

Student #:

This test consists of **six** pages of questions and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me **immediately**. There are **43** marks available. Good luck!

Avogadro's number, should you need it, is $6.022\,140\,857\,x\,10^{23}\,mol^{-1}$

1) [6 marks] Complete and balance the following reactions. Give the phases of all products.

a) ____ Fe₂(CO₃)₃(s)
$$\xrightarrow{\Delta}$$
 Fe₂O₃(s) + 3CO₂(g)

b) ____
$$Cu_2O(s) +$$
 ____ $CO_2(g)$ $high pressure$ $Cu_2CO_3(s)$

c)
$$2 C_5H_{11}OH(I) + 15 O_2(g) \rightarrow 10CO_2(g) + 12H_2O(e)$$

2) [1 mark] Calculate the molar mass of Al₂(CO₃)₃·4H₂O.

$$2 \times 26.982$$
 $3 \times (12.011 + 15.999 \times 3)$
 $4 \times (2 \times 1.0079 + 15.999)$

- 3) [14 marks total] Note: to receive any credit for any part of this question, you must show the complete method by which you obtained your solution.

 Na₂SO₄ has a molar mass of 142.0 grams.
 - a) [1 mark] How many grams of Na₂SO₄ are necessary to supply 0.0500 moles of Na₂SO₄?

b) [1 mark] How many moles of Na₂SO₄ are in 5.68 grams of Na₂SO₄?

c) [1 mark] How many moles of oxygen atoms are in 0.0200 moles of Na₂SO₄?

d) [1 mark] How many moles of Na₂SO₄ are necessary to supply 0.100 moles of oxygen atoms?

e) [2 marks] How many grams of sodium atoms are in 0.160 moles of Na₂SO₄?

f) [2 marks] How many moles of Na₂SO₄ are necessary to supply 1.1495 grams of sodium atoms?

g) [3 marks] How many grams of Na_2SO_4 are necessary to supply 3.011 x 10^{20} atoms of sodium?

3.011×10²⁰ atoms Na ×
$$\frac{1}{6.022}$$
×10²³ atoms $\frac{1}{2}$ Na $\frac{1}{2}$ $\frac{1}{2}$

h) [3 marks] How many sodium atoms are contained in 1.42 grams of Na₂SO₄? (Give the actual number and not just a multiple of moles.)

4) [1 mark] Calculate the mass of a single atom of sodium in grams.

5) [4 marks] Calculate the percent by mass of each element in Ag(NH₃)₂Cl.

$$1 \times 107.868 = 167.868$$

 $2 \times 14.007 = 28.014$
 $6 \times 1.0079 = 6.0474$
 $1 \times 35.463 = 35.453$

177.3824 = mass of Invole of Sample.

177.3824 = 5ample.

- 6) **[5 marks total]** Glucose (an important source of energy) is 40.002 % carbon, 53.285 % oxygen, and the rest hydrogen (all by mass).
 - a) [3 marks] What is the empirical formula of glucose?

b) [2 marks] The molar mass of glucose is 180.157 grams. What is the molecular formula of glucose?

- 7) **[6 marks]** A 5.844-gram sample of NaCl (58.44 g/mol) was dissolved in enough water to make 250.0 mL of solution **A**. A 15.00-mL aliquot of solution **A** was taken and diluted to 200.0 mL to form solution **B**. Some solution **B** was then taken and diluted to 250.0 mL to form solution **C**. The concentration of solution **C** was found to be 1.200 x 10⁻³ M.
 - a) What was the concentration of solution A? Give your answer in moles/L.

b) What was the concentration of solution B? Give your answer in moles/L.

$$0.4 \text{ moles} \times 15 \times 10^{3} \text{ L} = 6 \times 10^{3} \text{ moles}$$

$$\frac{6 \times 10^{3} \text{ moles}}{200 \times 10^{3} \text{ L}} = 0.03 \text{ M}$$

c) How many mL of solution **B** were used to make solution **C**?

8) [6 marks] It took 22.62 mL of 0.1084 M NaOH to titrate a 15.00 mL aliquot of H₂SO₄:

 $2NaOH(aq) + H₂SO₄(aq) \longrightarrow Na₂SO₄(aq) + 2H₂O(l)$

a) What was the $[H_2SO_4]$ in the original aliquot? Give your answer in moles/L.

 $\frac{22.62 \times 10^{3} L \times 0.1084 \text{ moles NaOH} \times 14 L SOLP = 1.266 \times 10^{3} \text{ moles}}{L} = 1.266 \times 10^{3} \text{ moles}$ $\frac{1.266 \times 10^{3} L \times 0.1084 \text{ moles}}{15 \times 10^{3} L} = 0.08173 \text{ M}$

b) What was the [Na₂SO₄] after the titration was complete? Give your answer in moles/L.

22.62×10-3L×0.1084 moles NaOH x [Nar504 = 1,266×10-3]
L ZNaOH moles Nar504

15,00×103 moles 15,00×103L+22.62×103L = 0.63259M