Chemistry 1094 Spring 2018 Test 3

Name: \qquad Student Number: \qquad
This test consists of six pages of questions and a periodic table. Please ensure that you have a complete paper and, if you do not, obtain one from me immediately. There are 36 marks available. Good luck!

1) [3 marks] A compound has been found to have the empirical formula $\mathrm{C}_{2} \mathrm{HNO}_{2}$. If the molar mass of the compound is known to be between 170 and 240 grams, what is the molecular formula of the compound?
2) [3 marks] If you react 20.0 grams of $\mathrm{CaCl}_{2}(111.0 \mathrm{~g} / \mathrm{mol})$ with excess $\mathrm{K}_{3} \mathrm{P}$, how many grams of $\mathrm{Ca}_{3} \mathrm{P}_{2}(182.2 \mathrm{~g} / \mathrm{mol})$ should you collect?
$3 \mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{~K}_{3} \mathrm{P}(\mathrm{aq}) \longrightarrow \mathrm{Ca}_{3} \mathrm{P}_{2}(\mathrm{~s})+6 \mathrm{KCl}(\mathrm{aq})$
3) [4 marks] A 701.4-mg sample of a compound of formula $\mathrm{M}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ was reacted with excess BaCl_{2} :

$$
\mathrm{M}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{BaCl}_{2}(\mathrm{aq}) \longrightarrow 3 \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{MCl}_{3}(\mathrm{aq})
$$

A total of 1435.3 mg of $\mathrm{BaSO}_{4}(233.38 \mathrm{~g} / \mathrm{mol})$ was collected. What is the metal, M ?
4) [4 marks] How many grams of 80.0-percent pure $\mathrm{AgNO}_{3}(169.9 \mathrm{~g} / \mathrm{mol})$ are necessary to produce 3.546 grams of $\mathrm{Ag}_{3} \mathrm{P}(354.6 \mathrm{~g} / \mathrm{mol})$?
$3 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Na}_{3} \mathrm{P}(\mathrm{aq}) \longrightarrow \mathrm{Ag}_{3} \mathrm{P}(\mathrm{s})+3 \mathrm{NaNO}_{3}(\mathrm{aq})$
5) [3 marks] If you made a solution using 30.0 grams of ethanol (molar mass 46.07 grams) and 12.0 grams of water (molar mass 18.02 grams), which compound would be the solute, and which the solvent? (Note: Show all your work and reasoning to receive any credit for your answer.)
6) [4 marks] A $15.00-\mathrm{mL}$ aliquot of 0.500 M NaCl was taken and diluted to 200.0 mL to form solution A. A $25.00-\mathrm{mL}$ aliquot of solution A was taken and diluted to 250.0 mL to form solution B. If you had 1.00 litres of solution \mathbf{B}, how many grams of $\mathrm{NaCl}(58.44 \mathrm{~g} / \mathrm{mol})$ would it contain?
7) [3 marks] A $25.00-\mathrm{mL}$ aliquot of $\mathrm{H}_{3} \mathrm{PO}_{4}$ was taken and titrated with 45.00 mL of 0.01000 M $\mathrm{NaOH}:$
$3 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
What was the concentration of the $\mathrm{H}_{3} \mathrm{PO}_{4}$?
8) [8 marks total] A 50.97-gram sample of $\mathrm{AgNO}_{3}(169.9 \mathrm{~g} / \mathrm{mol})$ was reacted with 20.00 grams of $\mathrm{Na}_{3} \mathrm{P}(100.0 \mathrm{~g} / \mathrm{mol})$.

$$
3 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Na}_{3} \mathrm{P}(\mathrm{aq}) \longrightarrow \mathrm{Ag}_{3} \mathrm{P}(\mathrm{~s})+3 \mathrm{NaNO}_{3}(\mathrm{aq})
$$

a) [3 marks] Identify the limiting reagent.
b) [2 marks] How many grams of $\mathrm{Ag}_{3} \mathrm{P}(354.6 \mathrm{~g} / \mathrm{mol})$ should be collected?
c) [3 marks] How many grams of which reagent will remain unreacted after the reaction is complete?
9) [4 marks] How many grams of $\mathrm{AgNO}_{3}(169.9 \mathrm{~g} / \mathrm{mol})$ are necessary to produce 3.1914 grams of $\mathrm{Ag}_{3} \mathrm{P}(354.6 \mathrm{~g} / \mathrm{mol})$ if the reaction

$$
3 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Na}_{3} \mathrm{P}(\mathrm{aq}) \longrightarrow \mathrm{Ag}_{3} \mathrm{P}(\mathrm{~s})+3 \mathrm{NaNO}_{3}(\mathrm{aq})
$$

is known to proceed with a 90.00 percent yield?

