Chemistry 1105 R11 Fall 2023 Test 2

Friday, October 27, 2023
Time: 1 hour 50 minutes

Name: \qquad Student \#: \qquad
This test consists of nine pages of questions, a page containing useful constants and conversions, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me immediately. There are 49 marks available. Good luck!

1) [4 marks] Give the oxidation number of sulphur (S) in the following compounds or ions:
\qquad
2) [5 marks total] Given the following (unbalanced) redox reaction, occurring in acidic solution:
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2}+\mathrm{C}_{6} \mathrm{H}_{6} \longrightarrow \mathrm{CO}_{2}+\mathrm{Cr}^{3+}$
a) [3 marks] Balance the reaction.
b) [0.5 marks] Identify the oxidizing agent.
c) [0.5 marks] Identify the species being reduced.
d) [1 mark] How many electrons are transferred in the overall process?
3) [3 marks] A 1456.6-mg sample of a compound of formula $\mathrm{M}_{3} \mathrm{PO}_{4}$ (where M is an unknown element) was reacted with excess CaCl_{2} and 790.9 mg of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(310.174 \mathrm{~g} / \mathrm{mol})$ collected:
$2 \mathrm{M}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{CaCl}_{2}(\mathrm{aq}) \longrightarrow 6 \mathrm{MCl}(\mathrm{aq})+\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$
What is the metal, M ?
4) [4 marks] A certain volume of 12.4 M HCl was taken and diluted to 200.0 mL to make solution A. 25.00 mL aliquot of solution A was then taken and diluted to 500.0 mL to form solution B. The concentration of solution B was found to be 0.0310 M . How many mL of 12.4 M HCl were used to make solution A ?
5) [3 marks] A $102.5-\mathrm{mg}$ sample of $\mathrm{KHP}(204.2 \mathrm{~g} / \mathrm{mol})$ required 26.70 mL of $\mathrm{Ca}(\mathrm{OH})_{2}$ to titrate: $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{KHP}(\mathrm{aq}) \longrightarrow \mathrm{Ca}(\mathrm{KP})_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

What was the concentration of the $\mathrm{Ca}(\mathrm{OH})_{2}$? Give your answer in moles/L.
6) [2 marks] Calculate the percent by mass of sulphur in $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.
7) [6 marks] Zonisamide is an antibiotic - a "sulfa drug" in particular. It consists of 45.276% carbon, 3.799% hydrogen, 13.200% nitrogen, 22.616% oxygen, and (maybe obviously) the rest Sulphur, all by mass.
a) What is the empirical formula of Zonisamide?
b) If Zonisamide were a gas, it would have a density of $0.100 \mathrm{~g} / \mathrm{L}$ at 8.81 torr pressure and $26.66^{\circ} \mathrm{C}$. What is the molecular formula of Zonisamide?
8) [6 marks] Ibuprofen is an anti-inflammatory drug. It consists of carbon, hydrogen, and oxygen.
a) If you burn a $1237.7-\mathrm{mg}$ sample of ibuprofen, you'll collect 3432.7 mg of CO_{2} $(44.009 \mathrm{~g} / \mathrm{mol})$ and 972.8 mg of $\mathrm{H}_{2} \mathrm{O}(18.015 \mathrm{~g} / \mathrm{mol})$. What is the empirical formula of ibuprofen?
b) Ibuprofen is mildly acidic and, as an acid, reacts with bases like $\mathrm{Mg}(\mathrm{OH})_{2}$ according to the balanced equation:

2 (Ibuprofen) $+\mathrm{Mg}(\mathrm{OH})_{2} \longrightarrow$ products
A fresh 226.9-mg sample of ibuprofen required 27.50 mL of $0.0200 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$ for complete reaction. What is the molecular formula of ibuprofen?
9) [3 marks] A solution of $\mathrm{H}_{2} \mathrm{SO}_{4}(98.077 \mathrm{~g} / \mathrm{mol})$ has a density of $1.0234 \mathrm{~g} / \mathrm{mL}$. A $20.00-\mathrm{mL}$ aliquot of this solution required 32.38 mL of 0.5156 M NaOH for complete reaction:
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
What is the percent by mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the original $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
10) [3 marks] How many grams of 80.00 -percent pure $\mathrm{NaCl}(58.443 \mathrm{~g} / \mathrm{mol})$ are required to collect exactly 10.00 grams of $\mathrm{PbCl}_{2}(278.1 \mathrm{~g} / \mathrm{mol})$ if the reaction
$2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \longrightarrow \mathrm{PbCl}_{2}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})$
proceeds with a 62.50 percent yield?
11) [4 marks] If you mix 20.00 mL of $0.00300 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$ with 20.00 mL of $0.00150 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$:
$3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
How many mL of $\mathrm{H}_{2} \mathrm{O}(18.015 \mathrm{~g} / \mathrm{mol})$ should be produced? The density of $\mathrm{H}_{2} \mathrm{O}$ is $0.9984 \mathrm{~g} / \mathrm{mL}$.
12) [6 marks total] The air we breathe has $\mathrm{X}_{\mathrm{O} 2}=0.21$ and $\mathrm{X}_{\mathrm{N} 2}=0.79$ (approximately). Imagine you had a room (filled with air) at $22.8^{\circ} \mathrm{C}$ at a total pressure of 758.9 torr. The room has a height of 3 metres, a length of 6 metres, and a depth of 8 metres.
a) [4 marks] How many kg of oxygen and of nitrogen would be in the room? The volume of the room is given by length x width x depth, and $1 \mathrm{~L}=1 \mathrm{dm}^{3}$
b) [2 marks] Calculate the partial pressures of O_{2} and N_{2} in the room. Give your answer in torr.

