Chemistry 1105 R11 Fall 2023 Test 2

F	riday, Octobe	er 27, 2023			Time: 1 hour 50 minutes	
Name:				Student #:		
со	nversions, an	d a periodic	table. Please		useful constants and a complete test and, if you do iilable. Good luck!	
1)	[4 marks] G	ive the oxid	ation number o	of sulphur (S) in the f	ollowing compounds or ions:	
	SO ₂ ²⁺	SO ₄ ²⁻	SO ₂ F ₂	K ₂ SOF ₂		

2) **[5 marks total]** Given the following (unbalanced) redox reaction, occurring in acidic solution:

$$Cr_2O_7^{2-} + C_6H_6 \longrightarrow CO_2 + Cr^{3+}$$

a) [3 marks] Balance the reaction.

- b) [0.5 marks] Identify the oxidizing agent.
- c) [0.5 marks] Identify the species being reduced.
- d) [1 mark] How many electrons are transferred in the overall process?

3) [3 marks] A 1456.6-mg sample of a compound of formula M₃PO₄ (where M is an unknown element) was reacted with excess CaCl₂ and 790.9 mg of Ca₃(PO₄)₂ (310.174 g/mol) collected:

$$2M_3PO_4(aq) + 3CaCl_2(aq) \longrightarrow 6MCl(aq) + Ca_3(PO_4)_2(s)$$

What is the metal, M?

4) [4 marks] A certain volume of 12.4 M HCl was taken and diluted to 200.0 mL to make solution A. 25.00 mL aliquot of solution A was then taken and diluted to 500.0 mL to form solution B. The concentration of solution B was found to be 0.0310 M. How many mL of 12.4 M HCl were used to make solution A?

5١	[3 marks]	1 Δ 102 5-mg s	ample of KHP	(204.2 g/mol	required 26.70	ml of Ca(OH)	to titrate
J	[3 IIIai ks	JA TOZIJING S	alliple of Kill	(204.2 g/11101	/ 1 Equil Eu 20.7 (to unate.

$$Ca(OH)_2(aq) + 2KHP(aq) \longrightarrow Ca(KP)_2(aq) + 2H_2O(I)$$

What was the concentration of the Ca(OH)₂? Give your answer in moles/L.

6) [2 marks] Calculate the percent by mass of sulphur in Al₂(SO₄)₃.

7)	[6 marks] Zonisamide is an antibiotic – a "sulfa drug" in particular. It consists of 45.276% carbon, 3.799% hydrogen, 13.200% nitrogen, 22.616% oxygen, and (maybe obviously) the rest Sulphur, all by mass.

a) What is the empirical formula of Zonisamide?

b) If Zonisamide were a gas, it would have a density of 0.100 g/L at 8.81 torr pressure and 26.66°C. What is the molecular formula of Zonisamide?

- 8) [6 marks] Ibuprofen is an anti-inflammatory drug. It consists of carbon, hydrogen, and oxygen.
 - a) If you burn a 1237.7-mg sample of ibuprofen, you'll collect 3432.7 mg of CO_2 (44.009 g/mol) and 972.8 mg of H_2O (18.015 g/mol). What is the empirical formula of ibuprofen?

b) Ibuprofen is mildly acidic and, as an acid, reacts with bases like Mg(OH)₂ according to the balanced equation:

A fresh 226.9-mg sample of ibuprofen required 27.50 mL of 0.0200 M $Mg(OH)_2$ for complete reaction. What is the molecular formula of ibuprofen?

9)	[3 marks] A solution of H ₂ SO ₄ (98.077 g/mol) has a density of 1.0234 g/mL. A 20.00-mL
	aliquot of this solution required 32.38 mL of 0.5156 M NaOH for complete reaction:

$$H_2SO_4(aq) + 2NaOH(aq) \longrightarrow Na_2SO_4(aq) + 2H_2O(l)$$

What is the percent by mass of H₂SO₄ in the original H₂SO₄ solution?

10) [3 marks] How many grams of 80.00-percent pure NaCl (58.443 g/mol) are required to collect exactly 10.00 grams of PbCl₂ (278.1 g/mol) if the reaction

$$2NaCl(aq) + Pb(NO_3)_2(aq) \longrightarrow PbCl_2(s) + 2NaNO_3(aq)$$

proceeds with a 62.50 percent yield?

11) [4 marks] If you mix 20.00 mL of 0.00300 M Mg(OH)₂ with 20.00 mL of 0.00150 M H₃PO₄:

$$3Mg(OH)_2(aq) + 2H_3PO_4(aq) \longrightarrow Mg_3(PO_4)_2(s) + 6H_2O(l)$$

How many mL of H_2O (18.015 g/mol) should be produced? The density of H_2O is 0.9984 g/mL.

12) [6 marks total] The air we breathe has $X_{O2} = 0.21$ and $X_{N2} = 0.79$ (approximately). Imagine
you had a room (filled with air) at 22.8°C at a total pressure of 758.9 torr. The room has a
height of 3 metres, a length of 6 metres, and a depth of 8 metres.

a) [4 marks] How many kg of oxygen and of nitrogen would be in the room? The volume of the room is given by length x width x depth, and $1 L = 1 \text{ dm}^3$

b) [2 marks] Calculate the partial pressures of O_2 and N_2 in the room. Give your answer in torr.