Name: \qquad Student \#: \qquad
This test consists of ten pages of questions, a page containing useful constants and conversions, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me immediately. There are $\mathbf{4 2}$ marks available. Good luck!

1) [$\mathbf{3}$ marks] The latest Apple Watch is water-resistant to a depth of 50 metres. How many bars of pressure is this? Assume water has a density of $0.998 \mathrm{~g} / \mathrm{cm}^{3}$.
2) [4 marks] The following apparatus was assembled:

Flask 1:
Volume: 8 litres
Contains: HCN
At a pressure of: 6 atm

Flask 2:

Volume: 12 litres
Contains: H_{2}
At a pressure of: 8 atm

The flasks were connected by a valve of no significant volume. When the valve was opened, the following reaction occurred:
$\mathrm{HCN}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{NH}_{3}(\mathrm{~g})$

The flasks were kept at a constant temperature of $336.18^{\circ} \mathrm{C}$ before, during and after reaction. Determine the partial pressures of all species after reaction. Give your answers in atm.
3) [4 marks] A 200-gram block of iron ($\mathrm{S}=0.449 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$) at $95^{\circ} \mathrm{C}$ was placed into 3 moles of water $\left(\bar{C}=75.37 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot{ }^{\circ} \mathrm{C}}\right)$ at $20^{\circ} \mathrm{C}$. The water was contained in a cup with $\mathrm{C}=20.84 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. What was the final temperature of the water?
4) [4 marks] When 1.99 g of $\mathrm{NaOH}(40.0 \mathrm{~g} / \mathrm{mol})$ is mixed with 100.0 mL of $0.500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ $\left(\mathrm{S}=4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}, \mathrm{D}=1.00 \mathrm{~g} / \mathrm{mL}\right)$ at $22.68^{\circ} \mathrm{C}$, the temperature of the resulting solution increases to $32.01^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}$ for the reaction:

$$
2 \mathrm{NaOH}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Give your answer in kJ.
5) [3 marks] Given the following reactions:

$$
\begin{array}{ll}
2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}^{\circ}=-2599.1 \mathrm{~kJ} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}^{\circ}=-571.6 \mathrm{~kJ} \\
2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}^{\circ}=-3120.8 \mathrm{~kJ}
\end{array}
$$

Calculate ΔH° for the reaction
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
6) [1 mark] Write the thermochemical equation for the formation of $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$, for which $\Delta H^{\circ}{ }_{f}=-84 \mathrm{~kJ} / \mathrm{mol}$.
7) [3 marks] Given that the enthalpy of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ is $-393.5 \mathrm{~kJ} / \mathrm{mol}$, and of $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ is $-285.8 \mathrm{~kJ} / \mathrm{mol}$, and given the reaction
$2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta \mathrm{H}^{\circ}=-2599.1 \mathrm{~kJ}$
calculate $\Delta \mathrm{H}^{\circ}$ for $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$. Give your answer in $\mathrm{kJ} / \mathrm{mol}$.
8) [3 marks] Given the reaction:
$2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta \mathrm{H}^{\circ}=-2599.1 \mathrm{~kJ}$
How many kJ of heat will be produced along with 88.02 grams of $\mathrm{CO}_{2}(44.01 \mathrm{~g} / \mathrm{mol})$?
9) [4 marks] Given the following equilibrium:
$2 \mathrm{PH}_{3}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~s})+16 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}>0$

Indicate the effect each of the following changes would have on the value of K_{c} and the moles of H_{2} in a reaction initially at equilibrium. Your choices are Increase from the starting value, Decrease from the starting value, or Not Change from the starting value. Circle your choice. You can assume that all changes are carried out at constant temperature unless explicitly stated otherwise.

	Effect on:					
Action:		K_{c}			Mol. $\mathrm{H}_{\mathbf{2}}$	
Increasing the temperature	I	D	NC	I	D	NC
Adding some $\mathrm{P}_{2} \mathrm{O}_{5}$	I	D	NC	I	D	NC
Removing some PH_{3}	I	D	NC	I	D	NC
Decreasing the volume	I	D	NC	I	D	NC

10) [3 marks] Given the following equilibria (and their fictitious equilibrium constants):
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{c}}=1 \times 10^{30}$ at $27^{\circ} \mathrm{C}$
$4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons 2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{c}}=1 \times 10^{-10}$ at $27^{\circ} \mathrm{C}$

Evaluate K_{c} for the equilibrium:
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+1.5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{C}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
at $27^{\circ} \mathrm{C}$.
11) [4 marks] A 2-L flask was charged with 4 moles of HF and the equilibrium $2 \mathrm{HF}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=2.56$
established. Calculate the concentrations of all species at equilibrium.
12) [4 marks] A 2-L flask was charged with 6 moles of H_{2} and 2 moles of N_{2} and the equilibrium $3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=1.00 \times 10^{-5}$ established. Calculate the equilibrium concentrations of all species.
13) [2 marks] Complete the following table:

Acid	Conjugate Base
$\mathrm{HPO}_{4}{ }^{2-}$	
	OH^{-}
$\mathrm{NH}_{2}{ }^{-}$	
	$\mathrm{CH}_{3}{ }^{-}$

