Chemistry 1105 R11 Fall 2023 Test 3

Friday, November 24, 2023

Time: 1 hour 50 minutes

Name: _____

Student #: _____

This test consists of **ten** pages of questions, a page containing useful constants and conversions, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me **immediately**. There are **42** marks available. Good luck!

1) **[3 marks]** The latest Apple Watch is water-resistant to a depth of 50 metres. How many bars of pressure is this? Assume water has a density of 0.998 g/cm³.

2) [4 marks] The following apparatus was assembled:

Flask 1:	Flask 2:
Volume: 8 litres	Volume: 12 litres
Contains: HCN	Contains: H ₂
At a pressure of: 6 atm	At a pressure of: 8 atm

The flasks were connected by a valve of no significant volume. When the valve was opened, the following reaction occurred:

 $HCN(g) + 3H_2(g) \longrightarrow CH_4(g) + NH_3(g)$

The flasks were kept at a constant temperature of 336.18°C before, during and after reaction. Determine the partial pressures of all species after reaction. Give your answers in atm.

3) **[4 marks]** A 200-gram block of iron (S = 0.449 J/g·°C) at 95°C was placed into 3 moles of water ($\bar{C} = 75.37 \frac{J}{mol \cdot °C}$) at 20°C. The water was contained in a cup with C = 20.84 J/°C. What was the final temperature of the water?

4) **[4 marks]** When 1.99 g of NaOH (40.0 g/mol) is mixed with 100.0 mL of 0.500 M H_2SO_4 (S = 4.184 J/g·°C, D = 1.00 g/mL) at 22.68°C, the temperature of the resulting solution increases to 32.01°C. Calculate ΔH for the reaction:

 $2NaOH(s) + H_2SO_4(aq) \longrightarrow Na_2SO_4(aq) + 2H_2O(I)$

Give your answer in kJ.

5) [3 marks] Given the following reactions:

 $\begin{array}{ll} 2C_2H_2(g) + 5O_2(g) &\longrightarrow & 4CO_2(g) + 2H_2O(l) \\ 2H_2(g) + O_2(g) &\longrightarrow & 2H_2O(l) \\ 2C_2H_6(g) + 7O_2(g) &\longrightarrow & 4CO_2(g) + 6H_2O(l) \\ \end{array} \qquad \qquad \Delta H^\circ = -571.6 \text{ kJ} \\ \Delta H^\circ = -3120.8 \text{ kJ} \end{array}$

Calculate ΔH° for the reaction

 $C_2H_2(g) + 2H_2(g) \longrightarrow C_2H_6(g)$

- 6) **[1 mark]** Write the thermochemical equation for the formation of $C_2H_6(g)$, for which $\Delta H^{\circ}_f = -84 \text{ kJ/mol}$.
- 7) [3 marks] Given that the enthalpy of formation of CO₂(g) is -393.5 kJ/mol, and of H₂O(l) is -285.8 kJ/mol, and given the reaction

 $2C_2H_2(g) + 5O_2(g) \longrightarrow 4CO_2(g) + 2H_2O(I)$ $\Delta H^\circ = -2599.1 \text{ kJ}$

calculate ΔH°_{f} for C₂H₂(g). Give your answer in kJ/mol.

8) [3 marks] Given the reaction:

 $2C_2H_2(g) + 5O_2(g) \longrightarrow 4CO_2(g) + 2H_2O(I)$ $\Delta H^\circ = -2599.1 \text{ kJ}$

How many kJ of heat will be produced along with 88.02 grams of CO₂ (44.01 g/mol)?

9) [4 marks] Given the following equilibrium:

 $2PH_3(g) + 5H_2O(I) \implies P_2O_5(s) + 16H_2(g) \quad \Delta H^\circ > 0$

Indicate the effect each of the following changes would have on the value of K_c and the moles of H_2 in a reaction initially at equilibrium. Your choices are Increase from the starting value, **D**ecrease from the starting value, or **N**ot **C**hange from the starting value. Circle your choice. You can assume that all changes are carried out at constant temperature unless explicitly stated otherwise.

			Eff	ect or	າ:	
Action:		Kc			Mol. H ₂	
Increasing the temperature	Ι	D	NC	Ι	D	NC
Adding some P_2O_5	Ι	D	NC	Ι	D	NC
Removing some PH ₃	Ι	D	NC	Ι	D	NC
Decreasing the volume	Ι	D	NC	Ι	D	NC

10) [3 marks] Given the following equilibria (and their fictitious equilibrium constants):

 $C(s) + O_2(g) = CO_2(g)$ $4CO_2(g) + 6H_2O(I) = 2C_2H_6(g) + 7O_2(g)$

 $K_c = 1 \times 10^{30} \text{ at } 27^{\circ}\text{C}$ $K_c = 1 \times 10^{-10} \text{ at } 27^{\circ}\text{C}$

Evaluate K_c for the equilibrium:

 $C_2H_6(g) + 1.5O_2(g) \implies 2C(s) + 3H_2O(I)$

at 27°C.

11) [4 marks] A 2-L flask was charged with 4 moles of HF and the equilibrium

 $2HF(g) = H_2(g) + F_2(g)$ $K_c = 2.56$

established. Calculate the concentrations of all species at equilibrium.

12) [4 marks] A 2-L flask was charged with 6 moles of H_2 and 2 moles of N_2 and the equilibrium

 $3H_2(g) + N_2(g) \implies 2NH_3(g)$ $K_c = 1.00 \times 10^{-5}$

established. Calculate the equilibrium concentrations of all species.

13) [2 marks] Complete the following table:

Acid	Conjugate Base		
HPO4 ²⁻			
	OH ⁻		
NH ₂ -			
	CH₃⁻		