Chemistry 1105 Spring 2024 Test 2

Thursday, February 29, 2024
Time: 1 hour 50 minutes

Name: \qquad Student \#: \qquad
This test consists of six pages of questions, a page containing the names, symbols, and masses of the elements, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me immediately. There are $\mathbf{4 2}$ marks available. Good luck!

1) [8 marks] Complete the following table:

Compound Formula	Compound Name
$\mathrm{HCl}(\mathrm{g})$	hydrosulphuric acid
HClO	nitric acid
$\mathrm{Fe}(\mathrm{OH})_{2}$	calcium hydroxide
ClF_{3}	diphosphorus tetrachloride

2) [10 marks] Complete and balance the following reactions. Assume a reaction occurs in each case. Give only the molecular equation for each reaction. Be sure to indicate the phases of the products.
a) $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{~s}) \xrightarrow{\Delta}$
b) $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g}) \frac{\text { high }}{\text { pressure }}$
c) $\mathrm{Ca}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow$
d) $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{O}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow$
e) $\mathrm{Al}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow$
f) $\mathrm{HCl}(\mathrm{aq})+\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{~s}) \longrightarrow$
3) [3 marks] Given the following balanced molecular equation:
$2 \mathrm{HCl}(\mathrm{aq})+\mathrm{CaF}_{2}(\mathrm{~s}) \longrightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{HF}(\mathrm{aq})$
a) Give the full ionic equation.
b) Identify any spectator ions.
c) Give the net ionic equation.
4) [3 marks] A $25.00-\mathrm{mL}$ aliquot of $\mathrm{H}_{2} \mathrm{SO}_{4}$ required 12.50 mL of 0.08000 M NaOH for titration: $2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ What was the concentration of the original $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
5) [3 marks] In one experiment, 398.6 mg of MCl_{3} (where M is a mystery element) was reacted with excess AgNO_{3} :
$\mathrm{MCl}_{3}(\mathrm{aq})+3 \mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow 3 \mathrm{AgCl}(\mathrm{s})+\mathrm{M}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})$
A total of 1285.3 mg of $\mathrm{AgCl}(143.321 \mathrm{~g} / \mathrm{mol})$ was collected. What is the mystery element, M ?
6) [3 marks] A 7.4551-gram sample of $\mathrm{KCl}(74.551 \mathrm{~g} / \mathrm{mol})$ was dissolved in enough water to make 100.0 mL of solution \mathbf{A}. A 10.00 mL aliquot of solution \mathbf{A} was taken and diluted to 250.0 mL to form solution \mathbf{B}. What are the concentrations of solutions \mathbf{A} and \mathbf{B} ?
7) [3 marks] Calculate the percent by mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}(142.041 \mathrm{~g} / \mathrm{mol})$ in a solution that has a density of $1.0905 \mathrm{~g} / \mathrm{mL}$ and a concentration of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ of 0.76774 M .
8) [3 marks] Calculate the percent by mass of each element in $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.
9) [6 marks] Ibuprofen is 75.6935 percent carbon, 8.7948 percent hydrogen, and the rest oxygen, all by mass.
a) What is the empirical formula of ibuprofen?
b) A 313-mg sample of ibuprofen requires 801.1 mg of oxygen for complete combustion, according to the balanced reaction:

2 ibuprofen $+33 \mathrm{O}_{2} \longrightarrow$ products
What is the molecular formula of ibuprofen?

