Time: 1 hour 50 minutes

| Chemistry | 1105 | Spring | 2024 | Test | 2 |
|-----------|------|--------|------|------|---|
|           |      |        |      |      |   |

Thursday, February 29, 2024

| Name: ANSWERS Student | #: |
|-----------------------|----|
|-----------------------|----|

This test consists of **six** pages of questions, a page containing the names, symbols, and masses of the elements, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me **immediately**. There are **42** marks available. Good luck!

## 1) [8 marks] Complete the following table:

| Compound Formula    | Compound Name              |  |
|---------------------|----------------------------|--|
| HCI(g)              | hydrogen chloride          |  |
| H2S (ag)            | hydrosulphuric acid        |  |
| HCIO                | hypochlorous acid          |  |
| HN03                | nitric acid                |  |
| Fe(OH) <sub>2</sub> | iron(II) hydroxide         |  |
| Ca(OH)Z             | calcium hydroxide          |  |
| CIF <sub>3</sub>    | chlorine trifluoride       |  |
| P2Cl4               | diphosphorus tetrachloride |  |

2) [10 marks] Complete and balance the following reactions. Assume a reaction occurs in each case. Give only the molecular equation for each reaction. Be sure to indicate the phases of the products.

a) 
$$Al_2(CO_3)_3(S) \xrightarrow{\Delta} Al_2O_3(S) + 3CO_2(g)$$

b) 
$$H_2O(I) + CO_2(g) \xrightarrow{high} H_2CO_3(aq)$$

c) 
$$Ca(s) + O_2(g)$$
 ----

e) 
$$AI(s) + H_2SO_4(aq)$$
  $\longrightarrow$ 

f) 
$$HCI(aq) + AI_2(CO_3)_3(s)$$

3) [3 marks] Given the following balanced molecular equation:

$$2HCl(aq) + CaF_2(s) \longrightarrow CaCl_2(aq) + 2HF(aq)$$

a) Give the full ionic equation.

b) Identify any spectator ions.

c) Give the net ionic equation.

4) [3 marks] A 25.00-mL aliquot of  $H_2SO_4$  required 12.50 mL of 0.08000 M NaOH for titration:

$$2NaOH(aq) + H2SO4(aq) \longrightarrow Na2SO4(aq) + 2H2O(I)$$

What was the concentration of the original H<sub>2</sub>SO<sub>4</sub> solution?

5) [3 marks] In one experiment, 398.6 mg of MCl<sub>3</sub> (where M is a mystery element) was reacted with excess AgNO<sub>3</sub>:

$$MCl_3(aq) + 3AgNO_3(aq) \longrightarrow 3AgCl(s) + M(NO_3)_3(aq)$$

A total of 1285.3 mg of AgCl (143.321 g/mol) was collected. What is the mystery element, M?

$$\frac{398.6 \times 10^{-3} g}{2.989 \times 10^{-3} \text{ mol}} = 133.341.-g$$

$$= M + 13 \times 35.453$$

$$\Rightarrow M = 26.982 = A1$$

6) [3 marks] A 7.4551-gram sample of KCl (74.551 g/mol) was dissolved in enough water to make 100.0 mL of solution **A**. A 10.00 mL aliquot of solution **A** was taken and diluted to 250.0 mL to form solution **B**. What are the concentrations of solutions **A** and **B**?

$$7.4551g \times 1 mol = 0.1 mole$$
  
 $74.551g$   
 $[A] = 0.1 moles = 1 M
 $100 \times 10^{-3}L$$ 

7) [3 marks] Calculate the percent by mass of Na<sub>2</sub>SO<sub>4</sub> (142.041 g/mol) in a solution that has a density of 1.0905 g/mL and a concentration of Na<sub>2</sub>SO<sub>4</sub> of 0.76774 M.

8) [3 marks] Calculate the percent by mass of each element in Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>.

5: 
$$\frac{96.195}{342.147} \times 100 = 28.11596$$

0: 
$$\frac{191.988}{342.147} \times 100 = 56.11370$$

- 9) [6 marks] Ibuprofen is 75.6935 percent carbon, 8.7948 percent hydrogen, and the rest oxygen, all by mass.
- a) What is the empirical formula of ibuprofen?

900=100-75.6935-8.7948=15.5117 C6.302 H8.725 O.969 assume 100g sample...

75.6935 g C × 
$$\frac{1}{12.011}$$
 g = 6.302...  $\frac{1}{12.011}$  g = 8.725...  $\frac{1}{12.011}$  C6.302 H8.725 O.969

8.7948 g H×  $\frac{1}{1.0079}$  g = 8.725...  $\frac{1}{12.011}$  C13 H18 O2

15.5117 g O ×  $\frac{1}{15.9999}$  c 0.969...  $\frac{1}{12.9999}$  b) A 313-mg sample of ibuprofer requires 801.1 mg of oxygen for complete combustion,

b) A 313-mg sample of ibuprofen requires 801.1 mg of oxygen for complete combustion, according to the balanced reaction:

2 ibuprofen + 33 O₂ → products

What is the molecular formula of ibuprofen?

$$801.1 \times 10^{-3} \text{ gx} \frac{1 \text{ mol}}{31.998 \text{ g}} \times \frac{2 \text{ Ibu}}{3302} = 1.517 \times 10^{3} \text{ mol} \text{ Ibu.}$$

$$\frac{313 \times 10^{-3} \text{ g}}{1.517 \times 10^{-3} \text{ mol}} = 206.283 - \frac{9}{\text{mul}}$$

$$7 = \frac{206.283...}{206.2832} = 1,50$$

$$C_{13}H_{18}O_{2}$$