CHEM 1105

Colligative Properties

Problems from Silberberg's Chemistry, 2nd edition

- An 8.00 % (by mass) solution of aqueous ammonia has a density of 0.9651g/mL. Calculate the molarity, the molality, and the mole fraction of ammonia in this solution. (4.53 M; 5.11 m; 0.0842)
- 2. A florist prepares a solution of nitrogen-phosphorus fertilizer by dissolving 5.66 g NH₄NO₃ and 4.42 g (NH₄)₃PO₄ in enough water to make a 20.0 L solution. What are the molar concentrations of ammonium ion and phosphate ion in this solution? (**7.98** × 10⁻³ M NH₄⁺; 1.48 × 10⁻³ M PO₄³⁻)
- 3. Classify each of the following aqueous solutions as strong electrolytes, weak electrolytes or non-electrolytes.

Substance	Classification	Substance	Classification
HCl (aq)		C_5H_5N (aq)	
KNO ₃ (aq)		C ₃ H ₈ O ₃ (aq)	
$C_{6}H_{12}O_{6}(aq)$		H_3PO_4 (aq)	
NH ₃ (aq)		AlCl ₃ (aq)	

- 4. When making ice cream, the temperature of the ingredients is kept below 0 °C by using a salt ice bath. What mass of NaCl is needed to lower the melting point of 5.5 kg ice to -5.0 °C? (Assume that all of the salt will dissolve to form a solution). What mass of CaCl₂ would be needed to have the same effect? (4.3 × 10² g NaCl; 5.5 × 10² g CaCl₂)
- 5. What is the freezing point of 0.111 *m* urea in water? (K_f of water is 1.86 °C/*m*) (-0.206 °C)
- 6. The boiling point of ethanol (C₂H₆O) is 78.5 °C. What is the boiling point of a solution of 3.40 g of vanillin ($\mathcal{M} = 152.14$ g) in 50.0 g ethanol? (*K*_b of ethanol is 1.22 °C/*m*) (**79.0** °C)
- 7. The freezing point of benzene is 5.5 °C. What is the freezing point of a solution of 5.00 g naphthalene ($C_{10}H_8$) in 444 g benzene? (K_f of benzene is 4.90 °C/m) (5.1 °C)
- 8. What is the minimum mass of ethylene glycol ($C_2H_6O_2$) that must be dissolved in 14.5 kg water to prevent the solution from freezing at -10.0 °C? (**4840** g)
- 9. A solution is prepared by dissolving 1.50 g of a compound in 25.0 mL water at 25 °C. The boiling point of the solution is 100.45 °C. What is the molar mass of the compound? (density of water at 25 °C is 0.997 g/mL; K_b of water is 0.512 °C/m) (1 mol = 68.5 g)
- 10. Which of the following solutions has the lower freezing point: 10.0 g CH₃OH in 100. g H₂O, or 20.0 g CH₃CH₂OH in 200. g H₂O? Prove your choice with an appropriate calculation. (CH₃OH (aq))
- 11. Rank the following aqueous solutions in order of a) increasing boiling point, and b) increasing freezing point. 0.100 *m* NaNO₃; 0.200 *m* glucose and 0.100 *m* CaCl₂. (CaCl₂ sol'n has the lowest fp and highest bp; NaNO₃ and glucose will have less effect)