Name: \qquad Student \#: \qquad

This test consists of eight pages of questions and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me immediately. There are $\mathbf{3 8}$ marks available. Good luck!

1) [2 marks] How many mL of $0.1048 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ are required to titrate 0.5078 grams of $\mathrm{Ca}(\mathrm{OH})_{2}$ ($74.092 \mathrm{~g} / \mathrm{mol}$)?

$$
2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \longrightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

2) [3 marks] A 0.2999-gram sample of $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$ required 25.90 mL of 0.2031 M HCl for complete titration:

$$
\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3} \cdot \mathrm{nH}_{2} \mathrm{O}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{CO}_{2}(\mathrm{~g})+(3+\mathrm{n}) \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

What is the value of n in the formula $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$?
3) [4 marks] HCl solution \mathbf{A} had an unknown concentration. A 10.00 mL aliquot of solution \mathbf{A} was taken and diluted to 250.0 mL to form solution \mathbf{B}. A 20.00 mL aliquot of solution \mathbf{B} required 18.51 mL of $0.002000 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$ for complete reaction:
$\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

What was the concentration of solution \mathbf{A} ?
4) [3 marks] Reaction of 652.1 mg of MCl_{3} with excess AgNO_{3} resulted in the collection of 1592.4 mg of $\mathrm{AgCl}(143.321 \mathrm{~g} / \mathrm{mol})$:
$\mathrm{MCl}_{3}(\mathrm{aq})+3 \mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow 3 \mathrm{AgCl}(\mathrm{s})+\mathrm{M}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})$

What is the element, M ?
5) [4 marks] A 0.5000-gram sample of $\mathrm{Na}_{2} \mathrm{X}_{2} \mathrm{O}_{3}$ was dissolved in enough water to make 200.0 mL of solution. A $25.00-\mathrm{mL}$ aliquot was taken and 15.00 mL of 0.2500 M HCl added:
$\mathrm{Na}_{2} \mathrm{X}_{2} \mathrm{O}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{XO}_{2}(\mathrm{~g})+\mathrm{X}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

The excess HCl required 29.96 mL of 0.09878 M NaOH to titrate:
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

What is the element, X ?
6) [6 marks] 1,2,4-trithiolane (found commonly in shitake mushrooms and truffles) contains 19.334 percent carbon, 3.245 percent hydrogen, and the rest sulphur, all by mass.
a) What is the empirical formula of 1,2,4-trithiolane?
b) 1,2,4-trithiolane is flammable, according to the equation:
$2(1,2,4$-trithiolane $)+15 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow$ products

A 254-mg sample of 1,2,4-trithiolane required 490.6 mg of O_{2} for complete reaction. What is the molecular formula of $1,2,4$-trithiolane?
7) [5 marks total] Sulfamethoxazole (SMZ) is an antibiotic used to treat bacterial infections and bronchitis (among others). SMZ contains carbon, hydrogen, nitrogen, oxygen, and sulphur.
a) [4 marks] Combustion of a 511-mg sample of SMZ produced 887.9 mg of CO_{2} $(44.009 \mathrm{~g} / \mathrm{mol}), 199.9 \mathrm{mg}$ of $\mathrm{H}_{2} \mathrm{O}(18.015 \mathrm{~g} / \mathrm{mol}), 133.2 \mathrm{mg}$ of $\mathrm{N}_{2} \mathrm{O}(44.013 \mathrm{~g} / \mathrm{mol})$, and 161.5 mg of $\mathrm{SO}_{3}(80.062 \mathrm{~g} / \mathrm{mol})$. What is the empirical formula for SMZ ?
b) [1 mark] The molar mass of SMZ is 253.28 grams. What is the molecular formula of SMZ?
8) [3 marks] A 0.3217 M solution of CaX_{2} (where X is an unknown element) is 3.500 percent CaX_{2} by mass, and has a density of $1.02 \mathrm{~g} / \mathrm{mL}$. What is the element, X ?
9) [4 marks] The reaction of 25.13 grams of (impure) $\mathrm{AgNO}_{3}(169.872 \mathrm{~g} / \mathrm{mol})$ with excess $\mathrm{Na}_{2} \mathrm{~S}$ resulted in the collection of 11.00 grams of $\mathrm{Ag}_{2} \mathrm{~S}(247.801 \mathrm{~g} / \mathrm{mol})$:
$\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})$

If the reaction proceeded with 75.00 percent yield, what was the percent purity of the AgNO_{3} ?
10) [4 marks] If you react 390 mg of $\mathrm{Al}(\mathrm{OH})_{3}(78.00 \mathrm{~g} / \mathrm{mol})$ with 60.0 mL of $0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$:
$2 \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
what will be the concentration of the $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ (in moles/L) after reaction?

