Chemistry 1110 Spring 2024 Test 2

Wednesday, February 28, 2024

Time: 1 hour 50 minutes

Name: ANSWERS

Student #:

This test consists of **nine** pages of questions, a page of useful constants and conversions, a page containing functional group information, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me immediately. There are 56 marks (and three bonus marks) available. Good luck!

1) [2 marks] At 51.55°C and 1 bar pressure a compound of formula OF_n has a density of 2.0000 g/L. What is the value of n?

$$M\mu = (2)(0.08314467618)(324.7) = 53.99...9$$

$$(5.999 + n(18.998) = 53.99$$

$$= n = 2$$

2) [2 marks] My watch is water-resistant to a pressure of 5 bars. Assuming water has a density of 0.9984 g/cm³, to how many metres of water may I safely take my watch?

$$5 \text{bar} \times \frac{100,000 \text{Pa}}{1 \text{bar}} = 500,000 \text{Pa}$$

$$0.9984 \text{g} \times \frac{1 \text{kg}}{1000 \text{g}} \times \frac{100 \text{cm}}{1 \text{m}}^3 = 998.4 \frac{\text{kg}}{\text{m}^3}$$

$$500,000 = 998.4 \times 9.80665 \times h$$

 $\Rightarrow h = 51.07m$

- 3) [4 marks total] A gas mixture consists of three gases (gas A, gas B, and gas C). The mole fraction of gas A is 0.2. There are three moles of gas B, and the partial pressure of gas C is 10 atm. If the total pressure of the mixture is 20 atm:
 - a) [2 marks] Calculate the mole fractions of gases B and C.

$$\times c = \frac{10}{20} = 0.5$$

 $\times R = 1 - 0.5 - 0.2 = 0.3$

b) [2 marks] Calculate the partial pressures of gases A and B. Give your answers in atm.

$$P_{A} = (0.2)(20) = 4 \text{ atm}$$

 $P_{B} = (0.3)(20) = 6 \text{ atm}$

c) [3 marks - BONUS] Calculate the moles of gases A and C.

$$0.2 = \frac{A}{A + C + 3} \Rightarrow 0.2A + 0.2C + 0.6 = A$$

 $0.2A + 0.2C = 0.6 (1)$

$$(1) \times 5 + (2)$$

 $4A - C = 3$
 $-A + C = 3$
 $3A = 6$
 $A = 7$

$$0.2 = \frac{2}{5+C}$$
 $1 = 10 \Rightarrow C = 1$

(1)
$$\times 5 + (2) \times 2$$
 $4A - C = 3$
 $-A + C = 3$
 $3A = 6$

0.2 = $\frac{2}{5 + C}$
 $1 = \frac{10}{5 + C} \implies C = 5$

Stc

4) [4 marks] The following apparatus was assembled:

Bulb 1:

Volume: 4 litres

Gas: C₂H₂

Pressure: 2280 torr

Bulb 2:

Volume: 6 litres

Gas: H₂

Pressure: 1520 torr

The two bulbs were separated by a valve. When the valve was opened, the following reaction occurred:

$$C_2H_2(g) + 2H_2(g) \longrightarrow C_2H_6(g)$$

Both bulbs were maintained at a temperature of 945.51°C before, during, and after reaction. Calculate the partial pressures of all species *after reaction*.

LR check:

5) [3 marks] A gas of formula SCI_n effuses about 30 percent faster than a gas of formula SCI_{n+2} . What is the value of n?

$$M_{n} * * (1.3r)^{2} = M_{n+2}(r)^{2}$$

$$\int_{0.695}^{1.695} = S + (n+2)CI$$

$$I_{0.695} + I_{0.695} = S + n \cdot CI + 2 \cdot CI$$

$$O_{0.695} + n(0.69cI) - 2 \cdot CI = O$$

$$N = \frac{2 \cdot CI - 0.69 \cdot S}{0.695} = \boxed{2}$$

- a) The number of bonding pairs of electrons is:
- b) The number of non-bonding (lone) pairs of electrons is:
- c) The number of sigma bonds is:
- d) The number of pi bonds is: 3

- 7) [5 marks] Complete the following table for the OCN⁻¹ ion (C the centre atom):
 - Include all non-zero formal charges.
 - Circle the "best" resonance form.
 - Draw only non-equivalent resonance forms.

I'll mark only what you write in the table; you can use the rest of the page for rough work (if you wish).

Resonance Form 1	Resonance Form 2	Resonance Form 3
:0=C-N:	0=C=N 0 -1	;Ö-C=N:

8) [4 marks] The NO molecule tends to dimerize (attach to another NO molecule) while the NO⁺ ion does not. Give a possible explanation for this using Lewis structures.

NO has Il electrons available for bonding-I will be unpaired. O=N.

NO has no unpaired electrons available to form bonding pairs of electrons.

: OEN:

9) [2 marks] The OCF₂ molecule (C the centre atom, other atoms attached only to it) has only one possible Lewis resonance form. Why?

O: Any other resonance form would require a doubte bond :F: between C and F, which cannot happen (would put a + formal charge on F).

10) [5 marks] Complete the following table for the SO₂F₂ molecule (S the centre atom):

- Include all non-zero formal charges.
- Circle the "best" resonance form.
- Draw only non-equivalent resonance forms.

I'll mark only what you write in the table; you can use the rest of the page for rough work (if you wish).

all zero formal

11) [10 marks] Give IUPAC (or other acceptable) names for the following compounds:

a) CI CI

2,3-dimethyl-4,5,5-trichlorooctane

b) _____O___

(as an ether)

(NOT as an ether)

ethyl pentyl ether 1-ethoxypentane

c) F

d) OH

NN-diethyl-1,2-difluoro
Cyclobut-strair
an-1-anine

6-t-butyl-9-cyclopropyldecan-11-

12) [3 marks] Use the formula C₃H₉N to draw one example each of a primary, secondary, and tertiary amine. You do not need to name the compounds you draw, and you may use either the shorthand notation (as discussed in class) or draw all atoms.

-NH

N ...

N-3°

13) [8 marks] Give structures consistent with the following names:

a) 1,1-diethyl-4-methoxy-2,2-dimethylcyclohexane

b) 2-chloroethyl ethyl ether

c) 4,4-dibromo-5,5-dimethoxyhexan-2-amine

d) 2,2-difluoro-3-pentylcyclopropanol

