Chem 1110 Mole Concept, Back-titration, and Stoichiometry problems

1. A 0.984 g impure sample of MgO was completely dissolved in 40.0 mL of $0.600 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. The excess acid was back-titrated with 25.0 mL of 0.320 M NaOH . Calculate the percent purity of the MgO sample. [81.9 \%]
2. A sample of $\mathrm{BaCO}_{3}(\mathrm{MM}=197.3)$ has 25.00 mL of 0.2120 M HCl added to it. A back-titration of the excess HCl required 22.48 mL of 0.1082 M NaOH . Determine the mass of BaCO_{3}. ($0.283 \mathbf{g}$)
3. In an analysis of $\mathrm{M}_{2} \mathrm{CO}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}, 40.00 \mathrm{~mL}$ of 0.8450 M HCl was added to 5.00 g of the sample. A total of 51.14 mL of 0.1460 M KOH was required to neutralize the excess acid. Calculate the molar mass of the hydrate and identify M. (379 g/mol, $\mathbf{C s}_{2} \mathbf{C O}_{3} \cdot \mathbf{3} \mathbf{H}_{2} \mathrm{O}$)
4. A sample of a sulphide of a metal M (formula $\mathrm{M}_{\mathrm{a}} \mathrm{S}_{\mathrm{b}}$) is analyzed. The sulphur in the sample is recovered as 120 mL of $0.250 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}$ solution. The metal in the sample is recovered as 40.0 mL of 0.500 M solution of the metal. If the molar mass of the metal sulphide is 150 grams, determine the formula of the sulphide and identify the metal. $\left(\mathbf{A l}_{\mathbf{2}} \mathbf{S}_{\mathbf{3}}\right)$
5. A sample of solid sodium sulphite $\left(\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot \mathrm{XH}_{2} \mathrm{O}\right)$ of mass 0.4322 g was dissolved in water and oxidized to sodium sulphate by adding exactly 0.8000 g of I_{2}.
$\mathrm{I}_{2}(\mathrm{aq})+\mathrm{SO}_{3}^{-2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{SO}_{4}^{-2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})$
The resulting solution was then neutralized by the addition of exactly 40.00 mL of 0.100 M NaOH . Calculate the value of X . (5)
6. Calculate the molarity of the solution prepared by dissolving 5.623 g of NaOH in enough water to make 250.0 mL of solution. ($\mathbf{0 . 5 6 2 3} \mathbf{~ M}$)
7. Calculate the molarity of NaOH if 10.00 mL of the solution from question 6 is added to 50.00 mL of water. ($\mathbf{0 . 1 1 2 5} \mathbf{~ M}$)
8. How many grams of $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ are needed to make 750.0 mL of 0.225 M $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ solution? ($\mathbf{1 3 . 0} \mathbf{~ g}$)
9. What is the molarity of the solution formed by mixing 25.0 mL of 0.375 M NaCl solution with 42.0 mL of 0.632 M NaCl solution? ($\mathbf{0 . 5 3 6 0} \mathbf{M}$)
10. How many millilitres of $0.0487 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ are needed to react with 35.67 mL of 0.0748 M HCl ? ($\mathbf{2 7 . 4 0} \mathbf{~ m L}$)
11. A 10.00 mL sample of vinegar, an aqueous solution of acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ is titrated with 0.5062 M NaOH .16 .55 mL of NaOH is required to reach the end point. If the density of vinegar is $1.006 \mathrm{~g} / \mathrm{mL}$, what is the mass percent of acetic acid in the vinegar? (5.00 \%)
12. By titration 24.68 mL of 0.1017 M NaOH is required to neutralize 0.1506 g of an unknown organic acid. What is the formula of the acid assuming that the acid is monoprotic, that is, that the formula is $\mathrm{HC}_{\mathrm{n}} \mathrm{H}_{\mathrm{m}} \mathrm{O}_{\mathrm{p}}$? $\left(\mathbf{H C}_{\mathbf{2}} \mathbf{H}_{\mathbf{3}} \mathbf{O}_{\mathbf{2}}\right)$
13. A 0.2726 g sample of metal was dissolved in 50.00 mL of 0.500 M HCl . After all the metal had dissolved, the leftover acid was titrated with 0.1054 M NaOH . If 24.36 mL of 0.1054 M NaOH were required to neutralize the leftover acid, what was the atomic mass of the metal? The metal dissolved to form M^{+2} ions in solution. (24.3 g)
14. A piece of marble (assume it to be CaCO_{3}) reacts with 2.00 L of 2.52 M HCl . After dissolution of the marble, a 10.00 mL sample of the remaining $\mathrm{HCl}(\mathrm{aq})$ is withdrawn and titrated with 24.87 mL of 0.9987 M NaOH . What must have been the mass of the piece of marble? ($\mathbf{3 . 6 6} \mathbf{~ g}$)
15. An iron ore sample weighing 0.8765 g is dissolved in $\mathrm{HCl}(\mathrm{aq})$ and iron is obtained as Fe^{+2}. This solution is then titrated with 29.43 mL of 0.04212 M $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{aq})$. What is the \% Fe by mass in the ore sample? (47.39\%)

$$
\begin{gathered}
6 \mathrm{FeCl} 2(\mathrm{aq})+14 \mathrm{HCl}(\mathrm{aq})+\mathrm{K} 2 \mathrm{Cr} 2 \mathrm{O} 7(\mathrm{aq}) \\
6 \mathrm{FeCl} 3(\mathrm{aq})+2 \mathrm{KCl}(\mathrm{aq})+2 \mathrm{CrCl} 3(\mathrm{aq})+7 \mathrm{H} 2 \mathrm{O}(\mathrm{l})
\end{gathered}
$$

16. An alloy of copper and silver weighing 0.5000 grams is dissolved in HNO_{3} and treated with $\mathrm{H}_{2} \mathrm{~S}$ to precipitate both CuS and $\mathrm{Ag}_{2} \mathrm{~S}$. It is found that the solid sulphides weigh 0.7300 grams. Calculate the percentage of Ag in the alloy. (12.9 \%)
$2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq}) \longrightarrow \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq})$
$\mathrm{Cu}^{+2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq}) \longrightarrow \mathrm{CuS}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq})$
17. A mixture of aluminum and zinc weighing 1.67 g was completely dissolved in acid to give 1.69 L of hydrogen gas measured at STP. $(1 \mathrm{~mol}$ of gas $=22.4 \mathrm{~L}$ at STP) What is the weight of aluminum in the original mixture? The equations are:
$2 \mathrm{Al}(\mathrm{s})+6 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 3 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{Al}^{+3}(\mathrm{aq})$
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Zn}^{+2}(\mathrm{aq})$
18. A mixture of rubidium chloride, RbCl , and sodium chloride, NaCl , that weighed 0.2380 g, was dissolved in water. Enough silver nitrate, $\mathrm{AgNO}_{3}(\mathrm{aq})$, was then added to the solution to precipitate all the chloride ions as silver chloride, AgCl . After filtering and drying the silver chloride was found to weigh 0.4302 g . Calculate the percentage of RbCl in the original mixture. The equations are:

$$
\begin{aligned}
& \mathrm{RbCl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{RbNO}_{3}(\mathrm{aq})+\mathrm{AgCl}(\mathrm{~s}) \\
& \mathrm{NaCl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq})
\end{aligned} \longrightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{AgCl}(\mathrm{~s})
$$

(50.92 \%)
19. A mixture of NaI and KI weighing 3.9762 g was dissolved in water and treated with $\mathrm{Ag}^{+}(\mathrm{aq})$. All of the iodide in the mixture was recovered as 5.8622 g of $\mathrm{AgI}(\mathrm{s})$. What was the percentage by weight of KI in the original sample? (60.31 \%)
20. A 9.90 g sample of a mixture of $\mathrm{CaCO}_{3}(\mathrm{~s})$ and $\mathrm{NaHCO}_{3}(\mathrm{~s})$ is heated and the compounds decompose. The decomposition of the sample yielded 2.70 g of CO_{2} and 0.990 g of $\mathrm{H}_{2} \mathrm{O}$. What percentage of the original mixture is CaCO_{3} ?
$\mathrm{CaCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
$2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$

(6.70 \%)

21. A mixture of $\mathrm{Na}_{2} \mathrm{O}$ and BaO that weighs 6.00 g is dissolved in water, and the solution is then treated with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$. Barium sulphate, BaSO_{4}, precipitates from the solution, but sodium sulphate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$, is soluble and remains in solution. The BaSO_{4} is collected by filtration and is dried and found to weigh 6.00 g . What percent of the original sample is BaO ? (65.7 \%)
