Kwantlen Polytechnic University Department of Chemistry Chemistry 1154 Final Examination Saturday, December 13, 2014

Name: $\qquad$ Student \#: $\qquad$

Instructions:

- You have three hours to complete this exam.
- This exam consists of sixteen pages:

This cover page and 15 pages of questions. You should also have a formula sheet and a periodic table. Please ensure you have a complete paper, and obtain one immediately if you do not.

- There are $\mathbf{8 6}$ marks available in $\mathbf{2 9}$ questions. Plan your time appropriately.
- You are to work independently. Any sharing of any information of any kind in any way with anyone is strictly prohibited.

Good luck!

| Page | Mark | Max |
| :---: | :---: | :---: |
| 2 |  | 4 |
| 3 |  | 4 |
| 4 |  | 5 |
| 5 |  | 6 |
| 6 |  | 5 |
| 7 |  | 5 |
| 8 |  | 3 |
| 9 |  | 7 |
| 10 |  | 9 |
| 11 |  | 6 |
| 12 |  | 7 |
| 13 |  | 6 |
| 14 |  | 86 |
| 15 |  |  |
| 16 |  |  |
| Total |  |  |

1) [4 marks] $A$ forensic scientist is given a sample of $\mathrm{LSD}\left(\mathrm{C}_{24} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}\right.$, molar mass 376.52 g ) which is cut with sugar ( $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, molar mass 342.3 g ). When 1.00 mg of the mixture is combusted, 2.00 mg of $\mathrm{CO}_{2}$ is formed. What is the mass percentage of LSD in the mixture?
2) [4 marks total] A solid sample with mass 0.950 g contained strontium chloride ( $\mathrm{SrCl}_{2}$, molar mass 158.5 g ) and inert impurities. The solid was dissolved in water and 25.00 mL of 0.2241 $\mathrm{M} \mathrm{AgNO}_{3}(\mathrm{aq})$ was added. Solid AgCl precipitated. The excess $\mathrm{Ag}^{+}$ions were titrated with 15.48 mL of $0.09845 \mathrm{M} \mathrm{NH} 4 \mathrm{SCN}(\mathrm{aq})$ according to the equation:
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{NH}_{4} \mathrm{SCN}(\mathrm{aq}) \longrightarrow \mathrm{AgSCN}(\mathrm{s})+\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$
a) [3 marks] Determine the percent strontium chloride in the original sample.
b) [1 mark] What other method could be used to determine the percent strontium chloride?
3) [5 marks total] Two glass bulbs are filled with $\mathrm{NH}_{3}$ and HCl gases as illustrated below:


When the bulbs are connected the gases mix and solid $\mathrm{NH}_{4} \mathrm{Cl}$ is formed according to the reaction:
$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
If the initial pressure of $\mathrm{NH}_{3}$ is 4.90 atm and the initial pressure of HCl is 1.85 atm , both at 300 K , determine the following:
a) [2 marks] The mass of $\mathrm{NH}_{4} \mathrm{Cl}(53.5 \mathrm{~g} / \mathrm{mol})$ that should be produced
b) [2 marks] The final pressure in the system after the reaction is complete.
c) [1 mark] The percent yield of the reaction is only 6.50 g of $\mathrm{NH}_{4} \mathrm{Cl}$ is obtained.
4) [1 mark] The molar mass of the sex pheromone of the European elm bark beetle was determined by effusion. A sample of the pheromone for the US pine beetle (molar mass 142 g ) took 43.7 seconds to effuse. Under the same conditions it took 47.8 seconds for a similar sample of the European elm bark beetle pheromone to effuse. Determine the molar mass of the European elm bark beetle pheromone.
5) [5 marks total] A lab technician is trying to prepare a saturated solution of Copper(II) hydroxide. $\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$ has a $\mathrm{K}_{\mathrm{sp}}=4 \times 10^{-15}$. To do this, they add some $\mathrm{Cu}(\mathrm{OH})_{2}(97.57 \mathrm{~g} / \mathrm{mol})$ into a 1.500 L volumetric flask and stir.
a) [ 3 marks] Determine the mass of $\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$ in grams that will dissolve.
b) [2 marks] Determine the pH of the prepared solution
6) [ 5 marks total] A battery is constructed using the two half-reactions:

$$
\begin{aligned}
& \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}(\mathrm{aq}) \\
& \mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Co}(\mathrm{~s})
\end{aligned}
$$

The overall reaction occurring in the battery is:
$2 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Co}(\mathrm{s}) \rightleftharpoons 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Co}^{2+}(\mathrm{aq})$
The battery produces 1.051 V when run under standard conditions at $25^{\circ} \mathrm{C}$.
a) [1 mark] Give the (shorthand) cell notation for the battery.
b) [2 marks] Calculate the voltage that the battery will produce at $25^{\circ} \mathrm{C}$ if the $\left[\mathrm{Fe}^{3+}\right]=2.0 \times 10^{-4} \mathrm{M}$, the $\left[\mathrm{Fe}^{2+}\right]=5.0 \mathrm{M}$, and the $\left[\mathrm{Co}^{2+}\right]=0.80 \mathrm{M}$.
c) [1 mark] Over time, the voltage the battery will produce will:
i) Increase, because the concentration of reactants should increase
ii) Increase, because the concentration of products should increase
iii) Decrease, because the concentration of the reactants should increase
iv) Decrease, because the concentration of the products should increase
v) None of these
d) [1 mark] The battery described in this problem may be recharged successfully. This means that which of the following statements is or are true for the battery? (Circle any and all that apply.)
i) The reduction potential of water is more positive than that of $\mathrm{Co}^{2+}$
ii) The reduction potential of water is more negative than that of $\mathrm{Co}^{2+}$
iii) The oxidation potential of water is more positive than that of $\mathrm{Co}^{2+}$
iv) The oxidation potential of water is more negative than that of $\mathrm{Co}^{2+}$
7) [5 marks total] A certain compound has a normal melting point of $41^{\circ} \mathrm{C}$ and a normal boiling point of $123^{\circ} \mathrm{C}$. The triple point is at $39^{\circ} \mathrm{C}$ and 85 mmHg .
a) [3 marks] Sketch the phase diagram for this substance. Label all regions, lines and points appropriately.
b) [1 mark] Does the solid phase of this substance have a density greater or less than that of the liquid phase? How do you know? (No marks for guessing. ())
c) [1 mark] Describe what happens when a sample of this substance at 2 atm and a temperature of $20^{\circ} \mathrm{C}$ is heated at constant pressure to a temperature of $50^{\circ} \mathrm{C}$, pressure is decreased at constant temperature to 84 mmHg , and then cooled at constant pressure to $30^{\circ} \mathrm{C}$.
8) [3 marks] The primary constituent of lemon oil is the hydrocarbon limonene. Limonene is $88.16 \% \mathrm{C}$ and $11.84 \% \mathrm{H}$. A solution of 4.181 g of limonene in 50.00 g of benzene boils at $83.28^{\circ} \mathrm{C}$. The benzene used to prepare the solution boils at $80.15^{\circ} \mathrm{C}$. The boiling point elevation constant for benzene is $5.12^{\circ} \mathrm{C} \cdot \mathrm{kg} / \mathrm{mol}$. Determine the molecular formula of limonene.
9) [2 marks] Consider the following reaction:
$\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
When 1.00 mol of $\mathrm{CO}(\mathrm{g})$ is mixed with 3.00 mol of $\mathrm{H}_{2}(\mathrm{~g})$ in a 2.0 L vessel at $250^{\circ} \mathrm{C}$ and the reaction is allowed to reach equilibrium, it is determined that 0.500 mol of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are present at equilibrium. Determine $\mathrm{K}_{\mathrm{c}}$ at $250^{\circ} \mathrm{C}$.
a) $9.3 \times 10^{-3}$
b) $3.7 \times 10^{-2}$
c) 0.13
d) 0.15
e) 0.59
10) [1 mark] Consider the following reaction:
$\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Delta \mathrm{H}^{\circ}=-20.0 \mathrm{~kJ}$
If the system is at equilibrium, which of the following changes will push the equilibrium towards the reactants?
a) Increasing the volume
b) Adding a catalyst
c) Condensing water to remove it from the equilibrium
d) Increasing the pressure
e) Decreasing the temperature
11) [2 marks] The following equilibrium constants have been determined for oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ at $25^{\circ} \mathrm{C}$ :

| $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HC}_{2} \mathrm{O}_{4}^{-}(\mathrm{aq})$ | $\mathrm{K}_{\mathrm{a} 1}=6.5 \times 10^{-2}$ |
| :--- | :--- |
| $2 \mathrm{HC}_{2} \mathrm{O}_{4}^{-}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq})$ | $\mathrm{K}_{\mathrm{a} 2}=3.7 \times 10^{-9}$ |

Calculate the equilibrium constant for the following reaction at the same temperature:
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})$
a) $2.4 \times 10^{-10}$
b) $4.0 \times 10^{-6}$
c) $1.6 \times 10^{-5}$
d) $6.5 \times 10^{-2}$
e) $1.8 \times 10^{7}$
12) [2 marks] Consider the following equilibrium:
$\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=4.6 \times 10^{-3}$ at 800 K
If a sample of 15.0 g of $\mathrm{COCl}_{2}(\mathrm{~g})(98.9 \mathrm{~g} / \mathrm{mol})$ is placed in a 1.0 L flask at 800 K , the equilibrium concentration of $\mathrm{COCl}_{2}(\mathrm{~g})$ will be:
a) 0.0240 M
b) 0.0260 M
c) 0.126 M
d) 0.128 M
e) 0.152 M
13) [2 marks] Consider the following equilibrium:
$2 \mathrm{HCl}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=4.6 \times 10^{-3}$ at $800 \mathrm{~K}, \Delta \mathrm{H}^{\circ}=-40.5 \mathrm{~kJ}$

Determine $\mathrm{K}_{\mathrm{p}}$ at 400 K
a) $3.7 \times 10^{-9}$
b) $1.0 \times 10^{-5}$
c) $4.6 \times 10^{-3}$
d) $2.0 \times 10^{0}$
e) $5.6 \times 10^{3}$
14) [2 marks] Which of the following salts would have the highest molar solubility:
a) $\mathrm{Fe}(\mathrm{OH})_{3}$

$$
\mathrm{K}_{\mathrm{sp}}=2.5 \times 10^{-39}
$$

b) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
$\mathrm{K}_{\mathrm{sp}}=1.0 \times 10^{-26}$
c) NiS
$\mathrm{K}_{\text {sp }}=3.0 \times 10^{-19}$
d) Agl
$\mathrm{K}_{\mathrm{sp}}=8.3 \times 10^{-17}$
e) $\mathrm{Zn}(\mathrm{OH})_{2}$
$\mathrm{K}_{\text {sp }}=2.1 \times 10^{-16}$
15) [2 marks] Determine the molar solubility of $\mathrm{Mg}(\mathrm{OH})_{2}\left(\mathrm{~K}_{\mathrm{sp}}=1.8 \times 10^{-11}\right)$ in a solution that has a pH of 11.14.
a) $6.5 \times 10^{-9} \mathrm{M}$
b) $9.4 \times 10^{-6} \mathrm{M}$
c) $1.65 \times 10^{-4} \mathrm{M}$
d) $6.9 \times 10^{-4} \mathrm{M}$
e) $1.4 \times 10^{-3} \mathrm{M}$
16) [3 marks] An indicator $\left(\mathrm{pK}_{\mathrm{a}}=8.0\right)$ was used in a titration. The indicator appears yellow when $[\mathrm{Hind}] /\left[\right.$ Ind $\left.^{1-}\right]=25$ and blue when $[\mathrm{Hind}] /\left[\right.$ nd $\left.^{1-}\right]=0.25$. Calculate the pH range over which this indicator changes colour and place those pH values in the appropriate blanks below.
pH range: $\qquad$ (yellow) to $\qquad$ (blue)

Would this be a suitable indicator to use for the titration of $\mathrm{NH}_{3}$ with HCl ?

Yes No
17) [1 mark] For the equilibrium system
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{NH}_{2}{ }^{1-}+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
circle the true statement:
a) $\mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ are acting as Bronsted-Lowry bases.
b) $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$are a conjugate pair.
c) $\mathrm{NH}_{2}{ }^{1-}$ and $\mathrm{OH}^{1-}$ are acting as Bronsted-Lowry acids.
d) $\mathrm{NH}_{2}{ }^{1-}$ and $\mathrm{H}_{2} \mathrm{O}$ are a conjugate pair.
e) $\mathrm{NH}_{3}$ is acting as an Arrhenius base.
18) [3 marks] A solution of an unknown acid has a $\mathrm{pH}=2.95$. Reaction of 20.0 mL of this acid solution required 24.62 mL of 0.1025 M sodium hydroxide for complete neutralization. Assuming that the acid is monoprotic, what is its ionization constant?
a) $1.0 \times 10^{-7}$
b) $1.3 \times 10^{-6}$
c) $1.0 \times 10^{-5}$
d) $5.0 \times 10^{-4}$
e) $1.1 \times 10^{-3}$
19) [3 marks] Methyamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, has a $\mathrm{K}_{\mathrm{b}}=3.2 \times 10^{-5}$. What is the percent ionization in 1.0 and 0.1 M solutions of methylamine?
a) $0.018 \%(1 \mathrm{M})$ and $0.056 \%(0.1 \mathrm{M})$
b) $0.032 \%(1 \mathrm{M})$ and $0.0032 \%(0.1 \mathrm{M})$
c) $0.56 \%(1 \mathrm{M})$ and $1.8 \%(0.1 \mathrm{M})$
d) $0.56 \%$ in both
e) $0.32 \%$ in both
20) [1 mark] Match the numbers I through $V$ with the appropriate solutions in questions
(a) - (e):

I-A solution with a pH less than 7 that is not a buffer
II - A buffer solution with a pH between 4 and 7
III - A solution with a pH of 7
IV - A buffer solution with a pH between 7 and 10
V - A solution with a pH greater than 7 that is not a buffer
a) A mixture of 1 mole NaOH and 1 mole HCl in enough water to make 1.0 L $\qquad$
b) A mixture of 1 mole NaF and 1 mole $\mathrm{NaCH}_{3} \mathrm{COO}$ in enough water to make 1.0 L
c) A mixture of 1 mole NaF and 0.5 mole HF in enough water to make 1.0 L
d) A mixture of 50.0 mL 0.10 M HCl with $25.0 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{NH}_{3}$
e) A mixture of 25.0 mL 0.10 M HCl with $50.0 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{NH}_{3}$
21) [ $\mathbf{2}$ marks] What mass of sodium acetate (molar mass 82 g ) should be dissolved in 200.0 mL of 0.20 M acetic acid to form a buffer of $\mathrm{pH}=5.0$ ? $\mathrm{K}_{\mathrm{a}}$ for acetic acid is $1.8 \times 10^{-5}$.
a) 3.3 g
b) 5.9 g
c) 9.1 g
d) 16.4 g
e) 45 g
22) [3 marks] What is the pH at the equivalence point for the titration of 0.10 M benzoic acid by 0.10 M sodium hydroxide? ( $\mathrm{K}_{\mathrm{a}}$ for benzoic acid is $6.3 \times 10^{-5}$ )
a) 5.40
b) 5.55
c) 8.45
d) 8.60
e) 11.25
23) [2 marks] When 0.608 grams of $\mathrm{KNO}_{3}(101.1 \mathrm{~g} / \mathrm{mol})$ is dissolved in 100.0 mL of water ( $\mathrm{D}=1.00 \mathrm{~g} / \mathrm{mL}, \mathrm{S}=4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$ ), the temperature of the resulting solution falls from $25.000^{\circ} \mathrm{C}$ to $24.500^{\circ} \mathrm{C}$. Given this information, $\Delta \mathrm{H}^{\circ}$ for the reaction
$\mathrm{KNO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{KNO}_{3}(\mathrm{aq})$
should be:
a) -210 J
b) -35 kJ
c) 35 kJ
d) 210 J
e) None of these
24) [2 marks] Given the reaction:
$2 \mathrm{NaOH}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta \mathrm{H}^{\circ}=-160 \mathrm{~kJ}$
When 2.00 g of $\mathrm{NaOH}(40.0 \mathrm{~g} / \mathrm{mol})$ is added to 100.0 mL of $.400 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{~S}=4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right.$, $\mathrm{D}=1.00 \mathrm{~g} / \mathrm{mL})$, the amount of heat liberated should be:
a) 4 kJ
b) 6.4 kJ
c) 8 kJ
d) 10.4 kJ
e) 163 kJ
25) [2 marks] Given the reaction
$2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Delta \mathrm{H}^{\circ}=-5756 \mathrm{~kJ}$
and that the molar enthalpies of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ are -393.5 kJ and -285.8 kJ , respectively, the molar enthalpy of formation of $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$ should be:
a) -2878 kJ
b) -250 kJ
c) -125 kJ
d) 125 kJ
e) 250 kJ
f) 2878 kJ
26) [3 marks] At $78.37^{\circ} \mathrm{C}$, the vapour pressure of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is 1 atm. Complete the table below with only the sign of the indicated thermodynamic quantity for the reaction
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g}, 1$ atm $) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})$
Use either + (greater than zero), - (less than zero), or 0 (zero).

| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\Delta \mathrm{G}^{\circ}$ | $\Delta \mathrm{H}^{\circ}$ | $\Delta \mathrm{S}^{\circ}$ |
| :---: | :---: | :---: | :---: |
| 50 |  |  |  |
| 75 |  |  |  |
| 100 |  |  |  |

27) [10 marks total] The reaction
$2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{s}) \rightleftharpoons 3 \mathrm{C}(\mathrm{l})+\mathrm{D}(\mathrm{g})$
has $K_{p}=2.07 \times 10^{-23}$ at $26^{\circ} \mathrm{C}$, and $7.23 \times 10^{-21}$ at $77^{\circ} \mathrm{C}$.
a) [ $\mathbf{2}$ marks] $\Delta H^{\circ}$ for the reaction is:
i) $-1911 \mathrm{~J} / \mathrm{mol}$
ii) $-1000 \mathrm{~J} / \mathrm{mol}$
iii) $-100 \mathrm{~kJ} / \mathrm{mol}$
iv) $100 \mathrm{~kJ} / \mathrm{mol}$
v) $1000 \mathrm{~J} / \mathrm{mol}$
vi) $1911 \mathrm{~J} / \mathrm{mol}$
b) [2 marks] Four electrons are transferred during the reaction. At $26^{\circ} \mathrm{C}, \varepsilon^{\circ}$ for the reaction will be:
i) -0.337 V
ii) -0.029 V
iii) -0.003 V
iv) 0.003 V
v) 0.029 V
vi) 0.337 V
c) [2 marks] If the pressure of $\mathrm{A}(\mathrm{g})$ is set to 1000 bar, and the pressure of $\mathrm{D}(\mathrm{g})$ is set to $1 \times 10^{-20}$ bar, then at $77^{\circ} \mathrm{C}$, the reaction will be:
i) Spontaneous, because $\Delta \mathrm{S}^{\circ}{ }_{\text {univ }}<0$
ii) Spontaneous, because $\mathrm{Q}<\mathrm{K}$
iii) Spontaneous, because $\Delta G^{\circ}>0$
iv) Non-spontaneous, because $\Delta \mathrm{S}^{\circ}$ univ $<0$
v) Non-spontaneous, because $Q<K$
vi) Non-spontaneous, because $\Delta \mathrm{G}^{\circ}>0$
d) [1 mark] $\Delta \mathrm{S}^{\circ}$ for the reaction above is $-100 \mathrm{~J} / \mathrm{K}$. Is that value about what you would expect it to be? How do you know? (No marks for guessing. ())
e) [ $\mathbf{2}$ marks] $\Delta G^{\circ}$ for the reaction at $125^{\circ} \mathrm{C}$ is 139.815 kJ . $\mathrm{K}_{\mathrm{p}}$ for the reaction at $125^{\circ} \mathrm{C}$ is:
i) $5.70 \times 10^{-1835}$
ii) $3.76 \times 10^{-59}$
iii) $4.55 \times 10^{-19}$
iv) $2.20 \times 10^{18}$
v) $2.66 \times 10^{58}$
vi) $1.76 \times 10^{1834}$
f) [1 mark] At $25^{\circ} \mathrm{C}, \Delta \mathrm{E}^{\circ}-\Delta \mathrm{H}^{\circ}$ for the reaction should be:
i) -208 J
ii) -25 J
iii) -2.5 kJ
iv) 2.5 kJ
v) 25 J
vi) 208 J
28) [5 marks total] Given the half-reactions:

$$
\begin{array}{ll}
\mathrm{H}_{3} \mathrm{O}_{6}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \longrightarrow \mathrm{IO}_{3}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) & \varepsilon^{\circ}=1.6 \mathrm{~V} \\
\mathrm{IO}_{3}^{-}(\mathrm{aq})+5 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \longrightarrow \mathrm{HIO}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O} & \varepsilon^{\circ}=1.13 \mathrm{~V}
\end{array}
$$

a) [2 marks] $\varepsilon^{\circ}$ for the simultaneous conversion of the $\mathrm{IO}_{3}{ }^{-}$ion into HIO and $\mathrm{H}_{3} \mathrm{IO}_{6}$ will be:
i) -2.73 V
ii) -1.365 V
iii) -0.47 V
iv) 0.47 V
v) 1.365 V
vi) 2.73 V
b) [2 marks] $\varepsilon^{\circ}$ for the half-reaction

$$
\mathrm{H}_{3} \mathrm{IO}_{6}+8 \mathrm{H}^{+}+8 \mathrm{e}^{-} \longrightarrow \mathrm{HIO}+5 \mathrm{H}_{2} \mathrm{O}
$$

will be:
i) -2.73 V
ii) -1.365 V
iii) -0.47 V
iv) 0.47 V
v) 1.365 V
vi) 2.73 V
c) [1 mark] A battery is constructed using the two half-reactions above. The anode halfreaction will be:
i) $\mathrm{H}_{3} \mathrm{IO}_{6}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \longrightarrow \mathrm{IO}_{3}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}$ (I)
ii) $\mathrm{IO}_{3}^{-}(\mathrm{aq})+5 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \longrightarrow \mathrm{HIO}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$
iii) $\mathrm{IO}_{3}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{H}_{3} \mathrm{IO}_{6}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-}$
iv) $\mathrm{HIO}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 1 \mathrm{O}_{3}^{-}(\mathrm{aq})+5 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-}$
29) [1 mark] The normal boiling point of a liquid:
a) Is the temperature at which the liquid and vapour at in equilibrium.
b) Varies with the atmospheric pressure
c) Is the temperature at which the vapour pressure is 1 atm
d) Is the temperature at which the vapour pressure equals the external pressure
e) Is directly proportional to the molar mass of the liquid.

