Chemistry 1154 Fall 2022 Test 3

Thursday, November 24, 2022 Time: 1 hour 50 minutes

Name: _____ Student #: _____

This test consists of **ten** pages of questions, the formula sheet, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me **immediately**. There are **46** marks available. Good luck!

1) [5 marks total] A 2.0-litre flask was filled with 6 moles of CH_4 , 2 moles of C_3H_8 , and 4 moles of H_2 , and the equilibrium

$$3CH_4(g) \longrightarrow C_3H_8(g) + 2H_2(g)$$
 K = 4.0 at 601.36 K established at 601.36 K.

a) [1 mark] In which direction did the reaction shift to establish equilibrium? How do you know? (No marks for guessing. (3))

b) [4 marks] Calculate the equilibrium partial pressures of all species.

2)	[5 marks total] Butyric acid (HC ₄ H ₇ O ₂) has a pK _a of 4.82 and, apparently, the odour of vomit.
	Calculate the pH of the following solutions made using butyric acid and/or its salts. All
	solutions were made at 25°C.

a) [2 marks] 0.0661 M butyric acid

b) [3 marks] 0.151 M potassium butyrate

3)	[10 marks total] Caffeine ($C_8H_{10}N_4O_2$) is a weak base with a $K_b = 4.1 \times 10^{-4}$ and, of course,
	the substance essential to my coherence at 8 AM on Mondays and Thursdays. Calculate the
	pH of the following solutions made using caffeine and/or its salts. All solutions were made
	at 5°C, where $K_w = 2.0 \times 10^{-15}$.

a) [3 marks] 0.98 M caffeine

b) [4 marks] 10.0 mL of 0.99 M caffeine and 15.0 mL of 1.35 M caffeine hydrochloride

c) [3 marks] 0.205 M caffeine hydrochloride

4)	[6 marks total] Arsenic acid (H_3AsO_4) is a polyprotic acid with $K_{a1} = 6 \times 10^{-3}$, $K_{a2} = 1.1 \times 10^{-7}$,	
	and $K_{a3} = 3 \times 10^{-12}$. It is also very toxic, and so not to be mixed with morning tea (or, really,	
	tea at any other time of the day). Calculate the pH of the following solutions, all made using	
	arsenic acid and/or its salts. All solutions were made at 25°C.	

a) [4 marks] 10.0 mL of 1.0 M arsenic acid and 10.0 mL of 2.75 M NaOH

b) [2 marks] 1.0 M Na₂HAsO₄

5)	[1 mark] A solution has a pH of 6.50. The solution is:		
	a) Acidicb) Basicc) Neutrald) Potentially any of the above		
6)	[3 marks] A 0.250 M HClO ₄ solution is titrated with 0.250 M KOH. Calculate the pH at the equivalence point. The titration was carried out at a temperature where $K_w = 1.0 \times 10^{-13}$. (No marks for guessing. (3))		

7) [2 marks] Calculate the pH of a 5.00×10^{-3} M solution of Mg(OH)₂ at 25° C.

- 8) [3 marks] The indicator thymol blue begins its colour change at pH = 1.2, when the ratio $\frac{[In^-]}{[HIn]} = \frac{1}{6}$.
 - a) What is the pK_a for the indicator?

b) Thymol blue ends its colour change when the ratio $\frac{[In^-]}{[HIn]} = \frac{6}{1}$. What will be the pH of the solution at this point?

c) Do you think this indicator would be suitable for use when titrating a weak acid with a strong base? Why or why not? (No marks for guessing. (3))

9) [4 marks total] Given the following reactions:

$$Ca(s) + 2C(s)$$
 $\Delta H^{\circ} = -62.8 \text{ kJ}$
 $2Ca(s) + O_2(g)$
 \rightarrow $2CaO(s)$
 $\Delta H^{\circ} = -1271 \text{ kJ}$
 $CaO(s) + H_2O(l)$
 \rightarrow $Ca(OH)_2(aq)$
 $\Delta H^{\circ} = -653.1 \text{ kJ}$
 $2C_2H_2(g) + 5O_2(g)$
 \rightarrow $4CO_2(g) + 2H_2O(l)$
 $\Delta H^{\circ} = -2600 \text{ kJ}$
 $C(s) + O_2(g)$
 \rightarrow $CO_2(g)$
 $\Delta H^{\circ} = -393.5 \text{ kJ}$

a) [3 marks] Calculate ΔH° for the reaction:

$$Ca(OH)_2(aq) + C_2H_2(g) \longrightarrow CaC_2(s) + 2H_2O(l)$$

b) [1 mark] What is the molar enthalpy of formation of CaO?

10) [3 marks] Complete the table below given the reaction and the other data in the table. All work must be shown in order to receive any credit.

Compound	ΔH° _f (kJ/mol)
NH₃(g)	
O ₂ (g)	
NO(g)	90.29
H ₂ O(I)	-285.83

$$4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(I)$$
 $\Delta H^{\circ} = -1170.22 \text{ kJ}$

11) [4 marks] A sample of benzoic acid ($HC_7H_5O_2$, 122.12 g/mol) of mass 610.6 mg was burned in a bomb calorimeter with a heat capacity of 20.0 kJ/°C:

$$2HC_7H_5O_2(s) + 15O_2(g) \longrightarrow 14CO_2(g) + 6H_2O(l)$$

The temperature of the calorimeter rose by 0.80669°C. Calculate ΔH°_{298} for the combustion of benzoic acid.