Chemistry 1154 Fall 2022 Test 3 Thursday, November 24, 2022 Time: 1 hour 50 minutes Name: _____ Student #: _____ This test consists of **ten** pages of questions, the formula sheet, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me **immediately**. There are **46** marks available. Good luck! 1) [5 marks total] A 2.0-litre flask was filled with 6 moles of CH_4 , 2 moles of C_3H_8 , and 4 moles of H_2 , and the equilibrium $$3CH_4(g) \longrightarrow C_3H_8(g) + 2H_2(g)$$ K = 4.0 at 601.36 K established at 601.36 K. a) [1 mark] In which direction did the reaction shift to establish equilibrium? How do you know? (No marks for guessing. (3)) b) [4 marks] Calculate the equilibrium partial pressures of all species. | 2) | [5 marks total] Butyric acid (HC ₄ H ₇ O ₂) has a pK _a of 4.82 and, apparently, the odour of vomit. | |----|--| | | Calculate the pH of the following solutions made using butyric acid and/or its salts. All | | | solutions were made at 25°C. | a) [2 marks] 0.0661 M butyric acid b) [3 marks] 0.151 M potassium butyrate | 3) | [10 marks total] Caffeine ($C_8H_{10}N_4O_2$) is a weak base with a $K_b = 4.1 \times 10^{-4}$ and, of course, | |----|--| | | the substance essential to my coherence at 8 AM on Mondays and Thursdays. Calculate the | | | pH of the following solutions made using caffeine and/or its salts. All solutions were made | | | at 5°C, where $K_w = 2.0 \times 10^{-15}$. | a) [3 marks] 0.98 M caffeine b) [4 marks] 10.0 mL of 0.99 M caffeine and 15.0 mL of 1.35 M caffeine hydrochloride c) [3 marks] 0.205 M caffeine hydrochloride | 4) | [6 marks total] Arsenic acid (H_3AsO_4) is a polyprotic acid with $K_{a1} = 6 \times 10^{-3}$, $K_{a2} = 1.1 \times 10^{-7}$, | | |----|---|--| | | and $K_{a3} = 3 \times 10^{-12}$. It is also very toxic, and so not to be mixed with morning tea (or, really, | | | | tea at any other time of the day). Calculate the pH of the following solutions, all made using | | | | arsenic acid and/or its salts. All solutions were made at 25°C. | | a) [4 marks] 10.0 mL of 1.0 M arsenic acid and 10.0 mL of 2.75 M NaOH b) [2 marks] 1.0 M Na₂HAsO₄ | 5) | [1 mark] A solution has a pH of 6.50. The solution is: | | | |----|---|--|--| | | a) Acidicb) Basicc) Neutrald) Potentially any of the above | | | | 6) | [3 marks] A 0.250 M HClO ₄ solution is titrated with 0.250 M KOH. Calculate the pH at the equivalence point. The titration was carried out at a temperature where $K_w = 1.0 \times 10^{-13}$. (No marks for guessing. (3)) | | | 7) [2 marks] Calculate the pH of a 5.00×10^{-3} M solution of Mg(OH)₂ at 25° C. - 8) [3 marks] The indicator thymol blue begins its colour change at pH = 1.2, when the ratio $\frac{[In^-]}{[HIn]} = \frac{1}{6}$. - a) What is the pK_a for the indicator? b) Thymol blue ends its colour change when the ratio $\frac{[In^-]}{[HIn]} = \frac{6}{1}$. What will be the pH of the solution at this point? c) Do you think this indicator would be suitable for use when titrating a weak acid with a strong base? Why or why not? (No marks for guessing. (3)) 9) [4 marks total] Given the following reactions: $$Ca(s) + 2C(s)$$ $\Delta H^{\circ} = -62.8 \text{ kJ}$ $2Ca(s) + O_2(g)$ \rightarrow $2CaO(s)$ $\Delta H^{\circ} = -1271 \text{ kJ}$ $CaO(s) + H_2O(l)$ \rightarrow $Ca(OH)_2(aq)$ $\Delta H^{\circ} = -653.1 \text{ kJ}$ $2C_2H_2(g) + 5O_2(g)$ \rightarrow $4CO_2(g) + 2H_2O(l)$ $\Delta H^{\circ} = -2600 \text{ kJ}$ $C(s) + O_2(g)$ \rightarrow $CO_2(g)$ $\Delta H^{\circ} = -393.5 \text{ kJ}$ a) [3 marks] Calculate ΔH° for the reaction: $$Ca(OH)_2(aq) + C_2H_2(g) \longrightarrow CaC_2(s) + 2H_2O(l)$$ b) [1 mark] What is the molar enthalpy of formation of CaO? 10) [3 marks] Complete the table below given the reaction and the other data in the table. All work must be shown in order to receive any credit. | Compound | ΔH° _f (kJ/mol) | |---------------------|---------------------------| | NH₃(g) | | | O ₂ (g) | | | NO(g) | 90.29 | | H ₂ O(I) | -285.83 | $$4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(I)$$ $\Delta H^{\circ} = -1170.22 \text{ kJ}$ 11) [4 marks] A sample of benzoic acid ($HC_7H_5O_2$, 122.12 g/mol) of mass 610.6 mg was burned in a bomb calorimeter with a heat capacity of 20.0 kJ/°C: $$2HC_7H_5O_2(s) + 15O_2(g) \longrightarrow 14CO_2(g) + 6H_2O(l)$$ The temperature of the calorimeter rose by 0.80669°C. Calculate ΔH°_{298} for the combustion of benzoic acid.