Chemistry 1154 R25 Fall 2023 Test 2

Friday, October 27, 2023

Time: 1 hour 50 minutes

Student #: _____

Name: _____

This test consists of **seven** pages of questions, the formula sheet, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me **immediately**. There are **42** marks available. Good luck!

1) [4 marks] The following apparatus was assembled:

Flask 1:	Flask 2:			
Volume: 4 litres	Volume: 6 litres			
Filled with: C ₄ H ₁₀	Filled with: O ₂			
At a pressure of: 6000 torr	At a pressure of: 6500 torr			

The two flasks were kept at a temperature of 528.6°C. The flasks were connected to one another by a valve (of no significant volume). When the valve was opened, the reaction

 $2C_4H_{10}(g) + 13O_2(g) \longrightarrow 8CO_2(g) + 10H_2O(g)$

occurred. Calculate the mole fractions of all species after reaction. Give your answers in torr.

2) [4 marks] Helium effuses 5.0512 times faster than a gas of formula S_nF_m , and 5.9167 times faster than a gas of formula S_nF_{m+n} . What are the formulas of the two gases?

3) [4 marks] Given the following equilibrium:

 $N_2(g) + 3I_2(s) \implies 2NI_3(s) \qquad \Delta H^\circ > 0$

Predict the effect that each of the changes given below would have on the value of K_p and on the moles of I₂ present in a fresh system initially at equilibrium. Your choices are Increase from the starting value, **D**ecrease from the starting value, or **N**ot **C**hange from the starting value. You may assume that, unless explicitly stated otherwise, the changes were carried out at constant temperature.

	Effect on:					
		Kp			I ₂	
Adding some N ₂	I	D	NC	-	D	NC
Cooling the reaction mixture	I	D	NC	-	D	NC
compressing the reaction mixture	I	D	NC	I	D	NC
Adding some NI₃(s)	I	D	NC	I	D	NC

4) [6 marks total] For the reaction:

 $C_2H_4(g) + H_2(g) \implies C_2H_6(g)$ $\Delta H^\circ = -136.4 \text{ kJ and } K_p = 4.05 \text{ x } 10^{17} \text{ @ } 25^\circ \text{C}$ a) [2 marks] K_p for the reaction: $\frac{1}{2}C_{2}H_{6}(g) = \frac{1}{2}C_{2}H_{4}(g) + \frac{1}{2}H_{2}(g)$ at 25°C will be: i) 4.94 x 10⁻¹⁸ ii) 1.57 x 10⁻⁹ iii) -6.36 x 10⁸ iv) -2.03 x 10¹⁷ b) [2 marks] K_c at 25°C will be: i) 1.63 x 10¹⁴ ii) 1.63 x 10¹⁶ iii) 1.00 x 10¹⁹ iv) 1.00 x 10²¹ c) [2 marks] K_p at 30°C will be: i) 1.56 x 10⁻²² ii) 1.29 x 10⁻³⁰ iii) 1.63 x 10¹⁷ iv) 4.05 x 10¹⁷

- 5) **[2 marks]** The normal boiling point of ethanol is 78.35°C, and its enthalpy of vaporization is 42.3 kJ/mol. Its vapour pressure (in torr) at 35°C will be:
 - a) 2.8 x 10⁻⁸⁶ b) 9 x 10⁻³³ c) 99.2 d) 758.5
- 6) [4 marks] A flask was charged with 4 bar of CH₄, 1 bar of C₄H₁₀, and 3 bar of H₂, and the equilibrium:

 $4CH_4(g) = C_4H_{10}(g) + 3H_2(g)$ $K_p = 1.0547 \times 10^{-5}$

established. Calculate the equilibrium partial pressures of all species.

7) **[3 marks]** Only 7.761×10^{-4} grams of Bil₃ (bismuth iodide, 589.69 g/mol) will dissolve in 100 mL of water. What is the K_{sp} of Bil₃?

8) **[3 marks]** The K_{sp} of Cd(CN)₂ is 9.6 x 10⁻⁹. Calculate the molar solubility of Cd(CN)₂ in a 0.20 M solution of KCN.

9) **[3 marks]** A solution has $[CO_3^{2-}] = 0.0030$ M and $[PO_4^{3-}] = 0.0020$ M. To separate these two ions, you slowly add solid CaCl₂ into the solution. The K_{sp}s of CaCO₃ and Ca₃(PO₄)₂ are 2.8 x 10⁻⁹ and 2.0 x 10⁻²⁹, respectively. At the point of maximum separation, what percent of the first anion to precipitate will remain in solution?

10) [2 marks] The pH of a certain aqueous solution is 7.10. The solution is:

- a) Acidic
- b) Neutral
- c) Basic
- d) There is not enough information to answer this question.

11) [2 marks] The pH of a 1.00×10^{-9} M solution of Mg(OH)₂ at 25°C should be:

- a) 5.0 c) 7.0 e) 9.0
- b) 5.3 d) 8.7

- 12) [5 marks total] HN_3 (hydrozoic acid) is a weak acid with a $K_a = 1.9 \times 10^{-5}$. Calculate the pH of the following solutions:
 - a) [2 marks] 0.0526 M hydrazoic acid

b) [3 marks] A solution that has $[HN_3] = 0.10 \text{ M}$ and $[NaN_3] = 0.19 \text{ M}$