Chemistry 1154 R25 Fall 2023 Test 2

Friday, October 27, 2023
Time: 1 hour 50 minutes

Name: \qquad Student \#: \qquad

This test consists of seven pages of questions, the formula sheet, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me immediately. There are $\mathbf{4 2}$ marks available. Good luck!

1) [4 marks] The following apparatus was assembled:

Flask 1:
Volume: 4 litres
Filled with: $\mathrm{C}_{4} \mathrm{H}_{10}$
At a pressure of: 6000 torr

Flask 2:

Volume: 6 litres
Filled with: O_{2}
At a pressure of: 6500 torr

The two flasks were kept at a temperature of $528.6^{\circ} \mathrm{C}$. The flasks were connected to one another by a valve (of no significant volume). When the valve was opened, the reaction
$2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
occurred. Calculate the mole fractions of all species after reaction. Give your answers in torr.
2) [4 marks] Helium effuses 5.0512 times faster than a gas of formula $S_{n} F_{m}$, and 5.9167 times faster than a gas of formula $\mathrm{S}_{\mathrm{n}} \mathrm{F}_{\mathrm{m}+\mathrm{n}}$. What are the formulas of the two gases?
3) [4 marks] Given the following equilibrium:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{I}_{2}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NI}_{3}(\mathrm{~s}) \quad \Delta \mathrm{H}^{\circ}>0$
Predict the effect that each of the changes given below would have on the value of K_{p} and on the moles of I_{2} present in a fresh system initially at equilibrium. Your choices are Increase from the starting value, Decrease from the starting value, or Not Change from the starting value. You may assume that, unless explicitly stated otherwise, the changes were carried out at constant temperature.

	Effect on:					
	K_{p}					I_{2}
Adding some N_{2}	I	D	NC	I	D	NC
Cooling the reaction mixture	I	D	NC	I	D	NC
compressing the reaction mixture	I	D	NC	I	D	NC
Adding some $\mathrm{NI}_{3}(\mathrm{~s})$	I	D	NC	I	D	NC

4) [6 marks total] For the reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-136.4 \mathrm{~kJ} \text { and } \mathrm{K}_{\mathrm{p}}=4.05 \times 10^{17} @ 25^{\circ} \mathrm{C}
$$

a) [2 marks] K_{p} for the reaction:
$1 / 2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \rightleftharpoons 1 / 2 \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+1 / 2 \mathrm{H}_{2}(\mathrm{~g})$
at $25^{\circ} \mathrm{C}$ will be:
i) 4.94×10^{-18}
ii) 1.57×10^{-9}
iii) -6.36×10^{8}
iv) -2.03×10^{17}
b) [2 marks] K_{c} at $25^{\circ} \mathrm{C}$ will be:
i) 1.63×10^{14}
ii) 1.63×10^{16}
iii) 1.00×10^{19}
iv) 1.00×10^{21}
c) [2 marks] K_{p} at $30^{\circ} \mathrm{C}$ will be:
i) 1.56×10^{-22}
ii) 1.29×10^{-30}
iii) 1.63×10^{17}
iv) 4.05×10^{17}
5) [2 marks] The normal boiling point of ethanol is $78.35^{\circ} \mathrm{C}$, and its enthalpy of vaporization is $42.3 \mathrm{~kJ} / \mathrm{mol}$. Its vapour pressure (in torr) at $35^{\circ} \mathrm{C}$ will be:
a) 2.8×10^{-86}
b) 9×10^{-33}
c) 99.2
d) 758.5
6) [4 marks] A flask was charged with 4 bar of $\mathrm{CH}_{4}, 1$ bar of $\mathrm{C}_{4} \mathrm{H}_{10}$, and 3 bar of H_{2}, and the equilibrium:
$4 \mathrm{CH}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=1.0547 \times 10^{-5}$
established. Calculate the equilibrium partial pressures of all species.
7) [3 marks] Only 7.761×10^{-4} grams of Bil $_{3}$ (bismuth iodide, $589.69 \mathrm{~g} / \mathrm{mol}$) will dissolve in 100 mL of water. What is the $\mathrm{K}_{\text {sp }}$ of Bil_{3} ?
8) [3 marks] The $\mathrm{K}_{\text {sp }}$ of $\mathrm{Cd}(\mathrm{CN})_{2}$ is 9.6×10^{-9}. Calculate the molar solubility of $\mathrm{Cd}(\mathrm{CN})_{2}$ in a 0.20 M solution of KCN .
9) [3 marks] A solution has $\left[\mathrm{CO}_{3}{ }^{2-}\right]=0.0030 \mathrm{M}$ and $\left[\mathrm{PO}_{4}{ }^{3-}\right]=0.0020 \mathrm{M}$. To separate these two ions, you slowly add solid CaCl_{2} into the solution. The $\mathrm{K}_{\text {sp }}$ of CaCO_{3} and $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ are 2.8×10^{-9} and 2.0×10^{-29}, respectively. At the point of maximum separation, what percent of the first anion to precipitate will remain in solution?
10) [2 marks] The pH of a certain aqueous solution is 7.10 . The solution is:
a) Acidic
b) Neutral
c) Basic
d) There is not enough information to answer this question.
11) [2 marks] The pH of a $1.00 \times 10^{-9} \mathrm{M}$ solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ at $25^{\circ} \mathrm{C}$ should be:
a) 5.0
b) 5.3
c) 7.0
d) 8.7
e) 9.0
12) [5 marks total] HN_{3} (hydrozoic acid) is a weak acid with a $\mathrm{K}_{\mathrm{a}}=1.9 \times 10^{-5}$. Calculate the pH of the following solutions:
a) [2 marks] 0.0526 M hydrazoic acid
b) [3 marks] A solution that has $\left[\mathrm{HN}_{3}\right]=0.10 \mathrm{M}$ and $\left[\mathrm{NaN}_{3}\right]=0.19 \mathrm{M}$

