Chemistry 1154 R25 Fall 2023 Test 3

Friday, November 24, 2023

Time: 1 hour 50 minutes

Name:_____

Student #: _____

This test consists of **eleven** pages of questions, the formula sheet, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me **immediately**. There are **45** marks (and three bonus marks) available. Good luck!

- 1) **[13 marks total]** Calculate the pH (at 25°C) of the following solutions. Trimethylamine $((CH_3)_3N)$ is a weak base with $K_b = 6.3 \times 10^{-5}$.
 - a) [3 marks] 1.59 M (CH₃)₃N

b) [3 marks] 10 mL of 3.975 M (CH_3)_3N mixed with 15 mL of 1.67 M (CH_3)_3NHBr

c) [4 marks] 10 mL of 2.5 M (CH₃)₃N mixed with 15 mL of 1.0 M HBr

d) [3 marks] 0.63 M (CH₃)₃NHBr

- 2) [6 marks] Calculate the pH (at 25°C) of the following solutions. Benzoic acid (HC₆H₅CO₂) is a weak acid with $K_a = 6.3 \times 10^{-5}$.
 - a) 15 mL of 1.0 M $HC_6H_5CO_2$ mixed with 10 mL of 0.75 M KOH

b) 0.63 M NaC₆H₅CO₂

- 3) [9 marks total] Calculate the pH (at 25°C) of the following solutions. Fumeric acid ($H_2C_4H_2O_4$) is a polyprotic acid with $K_{a1} = 0.015$ and $K_{a2} = 2.6 \times 10^{-7}$.
 - a) [2 marks] 2.00 M KHC₄H₂O₄

b) [3 marks] 10 mL of 2.00 M $H_2C_4H_2O_4$ mixed with 20 mL of 1.50 M KOH

- c) **[4 marks]** Sketch (not necessarily to scale) the complete titration curve you would expect to see for Fumeric acid when titrated with a strong base. On your sketch, indicate:
 - i) Any buffer regions and the acid species present there
 - ii) Any equivalence points and the acid species present there
 - iii) Where the pH is controlled by excess base
 - iv) Where the end point of the titration would be observed. Assume you are using an indicator with a pK_a of 4

- 4) [5 marks total] A 10 mL aliquot of 0.012 M HNO₃ is titrated with 0.01 M KOH. An indicator with a $pK_a = 3.00$ is used for the titration.
 - a) [4 marks] At what added volume of KOH will the end point be reached?

b) **[1 mark]** Is the indicator a suitable one for the titration? How do you know? (No marks for guessing. (3))

5) [2 marks] Complete the following table:

Acid	Conjugate Base
HPO4 ²⁻	
	OH-
NH ₂ -	
	CH3-

6) **[4 marks]** When 1.99 g of NaOH (40.0 g/mol) is mixed with 100.0 mL of 0.500 M H_2SO_4 (S = 4.184 J/g·°C, D = 1.00 g/mL) at 22.68°C, the temperature of the resulting solution increases to 32.01°C. Calculate ΔH for the reaction:

 $2NaOH(s) + H_2SO_4(aq) \longrightarrow Na_2SO_4(aq) + 2H_2O(l)$

Give your answer in kJ.

7) [3 marks] Given the following reactions:

Calculate ΔH° for the reaction

 $C_2H_2(g) + 2H_2(g) \longrightarrow C_2H_6(g)$

8) **[1 mark]** Write the thermochemical equation for the formation of $C_2H_6(g)$, for which $\Delta H^{\circ}_{f} = -84 \text{ kJ/mol}$.

9) **[2 marks]** Given that the enthalpy of formation of CO₂(g) is -393.5 kJ/mol, and of H₂O(l) is -285.8 kJ/mol, and given the reaction

2C₂H₂(g) + 5O₂(g) → 4CO₂(g) + 2H₂O(l) Δ H° = -2599.1 kJ

calculate ΔH°_{f} for C₂H₂(g). Give your answer in kJ/mol

[BONUS – 3 marks]

The first ionization of H_2SO_4 is complete, and $K_{a2} = 0.011$. Calculate the pH of a 0.01 M solution of H_2SO_4 .