Acid/base practice problems (no calculator)

You can do all of these problems with or without a calculator. Answers given were generated without a calculator.

- 1) Calculate the pH (at 25°C, where $K_w = 1.0 \times 10^{-14}$) of the following mixtures:
 - a) 30.0 mL of 0.020 M Ca(OH)₂ and 20.00 mL of 0.040M HBr. Calculate the pOH of this solution as well. [**pH** = **11.90**, **pOH** = **2.10**]
 - b) 25.0 mL of 1.0 M HA ($K_a = 4 \times 10^{-4}$). [1.70]
 - c) 25.0 mL of 1.0 M HA and 10.0 mL of 1.0 M NaOH [3.22]
 - d) 25.0 mL of 1.0 M HA and 12.5 mL of 1.0 M NaOH [3.40]
 - e) 25.0 mL of 1.0 M HA and 15.0 mL of 1.0 M NaOH [3.58]
 - f) 25.0 mL of 1.0 M HA and 25.0 mL of 1.0 M NaOH [8.55]
 - g) 25.0 mL of 1.0 M HA and 26.0 mL of 1.0 M NaOH [12.30]

h) 25.0 mL of 10.0 M H₂SO₄. K_{a2} for H₂SO₄ = 1.1 x 10⁻² [-1.00]

- i) 25.0 mL of 1.0 M "B" (a weak base), for which $K_b = 4.0 \times 10^{-4}$ [12.30]
- j) 25.0 mL of 1.0 M "B" and 10.0 mL of 1.0 M HCl [10.78]
- k) 25.0 mL of 1.0 M "B" and 12.5 mL of 1.0 M HCl [10.60]
- 1) 25.0 mL of 1.0 M "B" and 15.0 mL of 1.0 M HCl [10.42]
- m) 25.0 mL of 1.0 M "B" and 25.0 mL of 1.0 M HCl [5.45]
- n) 25.0 mL of 1.0 M "B" and 26.0 mL of 1.0 M HCl [1.70]
- o) 25.0 mL of 1.0 M H₂A (for which $K_{a1} = 4.0 \times 10^{-4}$ and $K_{a2} = 4.0 \times 10^{-8}$) [1.70]
- p) 25.0 mL of 1.0 M H₂A and 10.0 mL of 1.0 M NaOH [3.22]
- g) 25.0 mL of 1.0 M H₂A and 12.5 mL of 1.0 M NaOH [3.40]
- r) 25.0 mL of 1.0 M H₂A and 15.0 mL of 1.0 M NaOH [3.58]
- s) 25.0 mL of 1.0 M H₂A and 25.0 mL of 1.0 M NaOH [5.40]
- t) 25.0 mL of 1.0 M H₂A and 35.0 mL of 1.0 M NaOH [7.22]
- u) 25.0 mL of 1.0 M H₂A and 37.5 mL of 1.0 M NaOH [7.40]
- v) 25.0 mL of 1.0 M H₂A and 40.0 mL of 1.0 M NaOH [7.58]
- w) 25.0 mL of 1.0 M H₂A and 50.0 mL of 1.0 M NaOH [10.46]
- x) 25.0 mL of 1.0 M H₂A and 55.0 mL of 1.0 M NaOH [12.80]
- 2) H₃A is a weak acid with pK_{a1} = 3.0, pK_{a2} = 7.0, and pK_{a3} = 11.0. Calculate the ratio of [H₃A]:[H₂A⁻¹]:[HA⁻²]:[A⁻³] in a solution with a pH of 6.0. If you were going to make a solution with a pH of 6.0 and only allowed to use two of H₃A, NaH₂A, Na₂HA, and Na₃A, which two would you pick? [10³:10⁶:10⁵:1, NaH₂A and Na₂HA]
- 3) A certain indicator has a pK_{ind} = 2.0. You use it in the titration of 10.00 mL of 0.1200 M HCl with 0.1000 M NaOH. At what added volume of NaOH will the endpoint be reached? Does this make it a good or a bad indicator for this titration? [10.00 mL, no]

- 4) A 0.010 *M* solution of a weak acid (HA) has a pH of 3.50. What are the K_a and pK_a of the acid? (**1.0 x 10⁻⁵ and 5.00**)
- 5) A 0.250 mol sample of HY is dissolved in enough water to form 250 mL of solution. If the pH of the solution is 3.30, what are the K_a and pK_a of HY? (**2.5 x 10**⁻⁷ and 6.60)
- 6) For the diprotic acid H₂A (pK_{a1} = 4.00 and pK_{a2} = 7.00) calculate [H2A], [HA¹⁻], [A²⁻], [H⁺], [OH⁻], pH, and pOH in a 0.200 *M* solution of H₂A. ([H₂A] = 0.195 *M*, [HA¹⁻] = [H⁺] = 5 x 10⁻³ *M*, [A²⁻] = 1 x 10⁻⁷ *M*, [OH⁻] = 2 x 10⁻¹² *M*, pH = 2.30, and pOH = 11.70)
- 7) The K_a for phenol is 1.0×10^{-10} . What is the pH of 0.100 M sodium phenolate, C₆H₅ONa, the sodium salt of phenol? (**11.50**)
- 8) The pK_b for aniline (C₆H₅NH₂) is 9.40. What is the pH of 0.100 *M* aniline hydrochloride, C₆H₅NH₃Cl? (**2.80**)
- 9) Explain (using equations only) whether an aqueous solution of each of the following salts is acidic, basic, or neutral: (a) KBr; (b) NH₄I; (c) KCN; (d) CaCl₂; (e) Ba(CH₃COO)₂; (f) (CH₃)₂NH₂Br. (neutral, acidic, basic, neutral, basic, acidic)
- 10) What are the [H⁺] and pH of a solution that consists of 0.50 *M* HX and 0.25 *M* NaX? The K_a of HX is 5.0 x 10^{-4} . (**1.0 x 10^{-3} and 3.00**)
- 11) What is the pH of a solution that consists of 0.20 M NH₃ and 0.10 M (NH₄)₂SO₄? The pK_b of NH₃ is 4.75. (**9.25**)
- 12) A solution consists of 0.25 *M* KHCO₃ and 0.75 *M* K₂CO₃. Carbonic acid (H₂CO₃) is a diprotic acid with $pK_{a1} = 6.35$ and $pK_{a2} = 10.33$.
 - a) Which pK_a is used in the calculation of the pH of the solution?
 - b) What is the pH of this solution? (10.81)
- 13) What is the ratio of [BrO⁻]/[HBrO] in a buffer solution with a pH of 8.34? The pK_a of HBrO is 8.64. (0.5)
- 14) A buffer containing 0.200 *M* HA and 0.150 *M* NaA has a pH of 3.35. What is the pH after 12.5 mmol of NaOH is added to 500 mL of this solution? (**3.47**)
- 15) The indicator cresol red has a $K_a = 5.0 \times 10^{-9}$. Over what approximate pH range does the indicator change color? (about 7.3 to 9.3)