Acid/base practice problems (no calculator)

You can do all of these problems with or without a calculator. Answers given were generated without a calculator.

1) Calculate the $\mathrm{pH}\left(\right.$ at $25^{\circ} \mathrm{C}$, where $\left.\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}\right)$ of the following mixtures:
a) 30.0 mL of $0.020 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ and 20.00 mL of 0.040 M HBr . Calculate the pOH of this solution as well. $[\mathbf{p H}=\mathbf{1 1 . 9 0}, \mathbf{p O H}=\mathbf{2 . 1 0}]$
b) 25.0 mL of $1.0 \mathrm{M} \mathrm{HA}\left(\mathrm{K}_{\mathrm{a}}=4 \times 10^{-4}\right)$. [1.70]
c) 25.0 mL of 1.0 M HA and 10.0 mL of 1.0 M NaOH [3.22]
d) 25.0 mL of 1.0 M HA and 12.5 mL of 1.0 M NaOH [3.40]
e) 25.0 mL of 1.0 M HA and 15.0 mL of 1.0 M NaOH [3.58]
f) 25.0 mL of 1.0 M HA and 25.0 mL of 1.0 M NaOH [8.55]
g) 25.0 mL of 1.0 M HA and 26.0 mL of 1.0 M NaOH [12.30]
h) 25.0 mL of $10.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4} . \mathrm{K}_{\mathrm{a} 2}$ for $\mathrm{H}_{2} \mathrm{SO}_{4}=1.1 \times 10^{-2}[\mathbf{- 1 . 0 0}]$
i) 25.0 mL of 1.0 M " B " (a weak base), for which $\mathrm{K}_{\mathrm{b}}=4.0 \times 10^{-4}[\mathbf{1 2 . 3 0}]$
j) 25.0 mL of 1.0 M " B " and 10.0 mL of 1.0 M HCl [10.78]
k) 25.0 mL of 1.0 M " B " and 12.5 mL of 1.0 M HCl [10.60]
l) 25.0 mL of 1.0 M " "B" and 15.0 mL of 1.0 M HCl [10.42]
m) 25.0 mL of 1.0 M " B " and 25.0 mL of 1.0 M HCl [5.45]
n) 25.0 mL of 1.0 M " B " and 26.0 mL of 1.0 M HCl [1.70]
o) 25.0 mL of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ (for which $\mathrm{K}_{\mathrm{a} 1}=4.0 \times 10^{-4}$ and $\mathrm{K}_{\mathrm{a} 2}=4.0 \times 10^{-8}$) [1.70]
p) 25.0 mL of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ and 10.0 mL of 1.0 M NaOH [3.22]
q) 25.0 mL of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ and 12.5 mL of 1.0 M NaOH [3.40]
r) 25.0 mL of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ and 15.0 mL of 1.0 M NaOH [3.58]
s) 25.0 mL of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ and 25.0 mL of 1.0 M NaOH [5.40]
t) 25.0 mL of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ and 35.0 mL of 1.0 M NaOH [7.22]
u) 25.0 mL of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ and 37.5 mL of 1.0 M NaOH [7.40]
v) 25.0 mL of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ and 40.0 mL of 1.0 M NaOH [7.58]
w) 25.0 mL of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ and 50.0 mL of 1.0 M NaOH [10.46]
x) 25.0 mL of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ and 55.0 mL of 1.0 M NaOH [12.80]
2) $\mathrm{H}_{3} \mathrm{~A}$ is a weak acid with $\mathrm{pK}_{\mathrm{a} 1}=3.0, \mathrm{pK}_{\mathrm{a} 2}=7.0$, and $\mathrm{pK}_{\mathrm{a} 3}=11.0$. Calculate the ratio of $\left[\mathrm{H}_{3} \mathrm{~A}\right]:\left[\mathrm{H}_{2} \mathrm{~A}^{-1}\right]:\left[\mathrm{HA}^{-2}\right]:\left[\mathrm{A}^{-3}\right]$ in a solution with a pH of 6.0 . If you were going to make a solution with a pH of 6.0 and only allowed to use two of $\mathrm{H}_{3} \mathrm{~A}, \mathrm{NaH}_{2} \mathrm{~A}, \mathrm{Na}_{2} \mathrm{HA}$, and $\mathrm{Na}_{3} \mathrm{~A}$, which two would you pick? $\left[\mathbf{1 0}^{3}: \mathbf{1 0}^{6}: \mathbf{1 0}^{5}: 1, \mathbf{N a H}_{2} \mathrm{~A}\right.$ and $\left.\mathrm{Na}_{2} \mathrm{HA}\right]$
3) A certain indicator has a $\mathrm{pK}_{\text {ind }}=2.0$. You use it in the titration of 10.00 mL of 0.1200 M HCl with 0.1000 M NaOH . At what added volume of NaOH will the endpoint be reached? Does this make it a good or a bad indicator for this titration? [$\mathbf{1 0 . 0 0} \mathbf{~ m L}, \mathbf{n o}$]
4) A 0.010 M solution of a weak acid (HA) has a pH of 3.50 . What are the K_{a} and pK_{a} of the acid? ($\mathbf{1 . 0 \times 1 0 ^ { - 5 }}$ and 5.00)
5) A 0.250 mol sample of HY is dissolved in enough water to form 250 mL of solution. If the pH of the solution is 3.30 , what are the K_{a} and $\mathrm{pK} \mathrm{a}_{\mathrm{a}}$ of HY? $\left(2.5 \times 10^{-7}\right.$ and 6.60)
6) For the diprotic acid $\mathrm{H}_{2} \mathrm{~A}\left(\mathrm{pK}_{\mathrm{a} 1}=4.00\right.$ and $\left.\mathrm{pK}_{\mathrm{a} 2}=7.00\right)$ calculate $[\mathrm{H} 2 \mathrm{~A}],\left[\mathrm{HA}^{1-}\right],\left[\mathrm{A}^{2-}\right],\left[\mathrm{H}^{+}\right]$, $\left[\mathrm{OH}^{-}\right], \mathrm{pH}$, and pOH in a 0.200 M solution of $\mathrm{H}_{2} \mathrm{~A} .\left(\left[\mathrm{H}_{2} \mathbf{A}\right]=\mathbf{0 . 1 9 5} \mathbf{~ M , ~}\left[\mathrm{HA}^{\mathbf{1}}\right]=\left[\mathbf{H}^{+}\right]\right.$ $=5 \times 10^{-3} M,\left[\mathrm{~A}^{2-}\right]=1 \times 10^{-7} M,\left[\mathrm{OH}^{-}\right]=2 \times 10^{-12} M, \mathrm{pH}=2.30$, and $\mathrm{pOH}=11.70$)
7) The K_{a} for phenol is 1.0×10^{-10}. What is the pH of 0.100 M sodium phenolate, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}$, the sodium salt of phenol? (11.50)
8) The pK_{b} for aniline $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$ is 9.40 . What is the pH of 0.100 M aniline hydrochloride, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{Cl}$? (2.80)
9) Explain (using equations only) whether an aqueous solution of each of the following salts is acidic, basic, or neutral: (a) KBr ; (b) $\mathrm{NH}_{4} \mathrm{I}$; (c) KCN ; (d) CaCl_{2}; (e) $\mathrm{Ba}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$; (f) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2} \mathrm{Br}$. (neutral, acidic, basic, neutral, basic, acidic)
10) What are the $\left[\mathrm{H}^{+}\right]$and pH of a solution that consists of 0.50 M HX and 0.25 M NaX ? The K_{a} of HX is $5.0 \times 10^{-4} .\left(\mathbf{1 . 0} \times 10^{-3}\right.$ and $\left.\mathbf{3 . 0 0}\right)$
11) What is the pH of a solution that consists of $0.20 \mathrm{M} \mathrm{H}_{3}$ and $0.10 M\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$? $\mathrm{The}_{\mathrm{pK}}^{\mathrm{b}}$ of NH_{3} is 4.75. (9.25)
12) A solution consists of $0.25 M \mathrm{KHCO}_{3}$ and $0.75 M \mathrm{~K}_{2} \mathrm{CO}_{3}$. Carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ is a diprotic acid with $\mathrm{pK}_{\mathrm{a} 1}=6.35$ and $\mathrm{pK}_{\mathrm{a} 2}=10.33$.
a) Which pK_{a} is used in the calculation of the pH of the solution?
b) What is the pH of this solution? (10.81)
13) What is the ratio of $\left[\mathrm{BrO}^{-}\right] /[\mathrm{HBrO}]$ in a buffer solution with a pH of 8.34 ? The pK_{a} of HBrO is 8.64. (0.5)
14) A buffer containing $0.200 M$ HA and $0.150 M \mathrm{NaA}$ has a pH of 3.35 . What is the pH after 12.5 mmol of NaOH is added to 500 mL of this solution? (3.47)
15) The indicator cresol red has a $\mathrm{K}_{\mathrm{a}}=5.0 \times 10^{-9}$. Over what approximate pH range does the indicator change color? (about 7.3 to 9.3)
