Back-titration Practice Problems (no calculator)

You can do all of these problems with or without a calculator.

1. A 1.3820 gram sample of $\mathrm{K}_{2} \mathrm{CO}_{3}(138.20 \mathrm{~g} / \mathrm{mol})$ is dissolved in enough water to make 250.0 mL of solution. A 25.00 mL aliquot is taken and titrated with 0.1000 M HCl :
$\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
How many mL of HCl are used? (20.00)
2. A 0.6910 g sample of $\mathrm{K}_{2} \mathrm{CO}_{3}(138.20 \mathrm{~g} / \mathrm{mol})$ is dissolved in enough water to make 200.0 mL of solution \mathbf{A}. A 20.00 mL aliquot of solution \mathbf{A} is taken and put into an Erlenmeyer flask. To the flask is added 20.00 mL of 0.2000 M HCl :

$$
\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

The resulting solution is then titrated with 0.1500 M NaOH .

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(\mathrm{aq})
$$

How many mL of NaOH are used? (20.00)
3. A 0.4004 gram sample of $\mathrm{CaCO}_{3}(100.1 \mathrm{~g} / \mathrm{mol})$ is added to a flask along with 15.00 mL of 2.000 M HCl .
$\mathrm{CaCO}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
Enough water is then added to make 200.0 mL of solution A. A 10.00 mL aliquot of solution \mathbf{A} is taken and titrated with 0.1100 M NaOH .
$\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(\mathrm{aq})$
How many mL of NaOH are used? (10.00)
4. A 0.7389 gram sample of $\mathrm{M}_{2} \mathrm{CO}_{3}$ was taken and dissolved in enough water to make 100.0 mL of solution A. A 10.00 mL aliquot of solution \mathbf{A} was taken and 25.00 mL of 0.2000 M HCl added.
$\mathrm{M}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{MCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
It took 20.00 mL of 0.1500 M NaOH to titrate the resulting solution.
$\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(\mathrm{aq})$
What is the metal, M? (Li)
5. A 1.1664 gram sample of $\mathrm{M}(\mathrm{OH})_{2}$ was mixed with 25.00 mL of 3.000 M HCl and enough water added to make 100.0 mL of solution \mathbf{A}.

$$
\mathrm{M}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{MCl}_{2}(\mathrm{aq})
$$

A 10.00 mL aliquot of solution A was taken and titrated with 20.00 mL of 0.1750 M NaOH .
$\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(\mathrm{aq})$
What is the metal, \mathbf{M} ? ($\mathbf{M g}$)
6. A 1.0687 gram sample of $\mathrm{Fe}(\mathrm{OH})_{\mathrm{n}}$ was missed with 20.00 mL of 2.000 M HCl and enough water added to make 200.0 mL of solution \mathbf{A}.
$\mathrm{Fe}(\mathrm{OH})_{\mathrm{n}}(\mathrm{s})+\mathrm{nHCl}(\mathrm{aq}) \longrightarrow \mathrm{FeCl}_{\mathrm{n}}(\mathrm{aq})+\mathrm{nH}_{2} \mathrm{O}(\mathrm{l})$
A 20.00 mL aliquot of solution \mathbf{A} was taken and titrated with 20.00 mL of 0.05000 M KOH .
$\mathrm{KOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{KCl}(\mathrm{aq})$
What is the value of n ? (3)

