Equilibrium Problems (no calculator)

You can do these problems with or without a calculator. The answers here were calculated without a calculator.

1. For the equilibrium

 $A(g) = B(g) + \frac{1}{2}C(g)$

 $K_c = 4.0 \text{ x } 10^{-13} \text{ at } 27^{\circ}C.$

- a) Evaluate K_P at 27°C. [2.0 x 10⁻¹²]
- b) If a flask initially containing only 1.00 bar of A(g) is allowed to come to equilibrium, what will be the equilibrium pressure of each species? $[P_A = 1 \text{ bar}; P_B = 2.0 \text{ x } 10^{-8} \text{ bar}; P_C = 1.0 \text{ x } 10^{-8} \text{ bar}]$
- 2. Bromine and chlorine both dissolve in carbon tetrachloride, whereupon they react (slowly) to form BrCl:

 $Br_2(CCl_4) + Cl_2(CCl_4) \implies 2BrCl(CCl_4)$

Under equilibrium conditions at some temperature, $[Br_2] = [Cl_2] = 0.50$ M, and [BrCl] = 0.10 M.

- a) Evaluate the equilibrium constant for this reaction at 25°C. [0.040 or 1/25]
- b) If 0.22 moles of BrCl were added to the equilibrium mixture you found in (a), what would be the new equilibrium concentrations of all species present? Assume 1 L of solution. ([Br2] = [Cl2] = 0.60 M; [BrCl] = 0.12 M)
- 3. Predict the effect each of the following would have on the reaction (initially at equilibrium):

 $CoCl_{4}^{-2}(aq) + 6H_2O(l) \implies Co(H_2O)_{6}^{+2}(aq) + 4Cl^{-1}(aq) \qquad \Delta H^{\circ} = -14 \text{ kJ}$

Indicate your choice by writing shift <u>R</u>ight, shift <u>L</u>eft, or <u>N</u>o change:

- a) Adding HCl gas
 b) Heating the reaction
 c) Adding AgNO₃ (AgCl is insoluble)
- d) Adding water

[LLRR]

4. The ionization of water is an equilibrium process for which $K_c = 1.0 \times 10^{-14}$ at 25°C:

 $H_2O(1) \implies H^+(aq) + OH^{-1}(aq) \qquad \Delta H = +57 \text{ kJ}$

Should K_w be larger or smaller at 75 than at 25? How do you know? Determine the approximate K_w of water at 75°C. [about 2 x 10⁻¹³]

- 5. The normal boiling point of a liquid is 67°C and its enthalpy of vaporization is 34 kJ/mol. What is its vapour pressure (in atmospheres) at 27°C? **[about 0.2]**
- 6. Solid compound A decomposes according to the endothermic reaction:

A(s) = 2B(g) + C(g) $K_p = 1.08 \times 10^{-4}$

- a) If 50.0 mmol of A(s) is placed in a 6.10-L sealed, evacuated flask at 25°C, calculate the total pressure in the flask at equilibrium. (9.0 x 10⁻² bar)
- b) How many millimoles of A(s) will be left at equilibrium in the experiment described in part (a)? (42.5)
- c) If some A(s) is placed in a 6.10-L evacuated flask at 25°C and some C(g) added so that the partial pressure of C(g) at equilibrium is 1.00 bar, calculate the equilibrium partial pressure of B(g) in the system. (about 1 x 10⁻² bar)
- d) What is the value of K_p for the equilibrium:

 $4B(g) + 2C(g) \implies 2A(s)$

(about 9 x 10⁷)

e) If the equilibrium B(g) = D(g) has equilibrium constant $K_p = 5.0 \times 10^{-3}$, determine the equilibrium constant for the reaction

(about 3 x 10⁻⁹)

- 7. The fastest growing use of methanol (CH₃OH) is to make the octane enhancer methyl tertbutyl ether. Today all methanol is produced (as a gas) by the reaction of carbon monoxide and hydrogen. The value of K_p for this reaction is (about) 2.0 x 10⁻⁴ at 327.°C.
 - a) Write the equilibrium reaction for the production of methanol.
 (2H₂(g) + CO(g) → CH₃OH(g))
 - b) What is the value of K_c at 327.°C? (about 0.5)
 - c) In which direction will this reaction shift if the temperature is raised, given that the $\Delta H^{\circ}_{rxn} = -90.7 \text{ kJ}$? Explain! (shifts to left because heat is a product when rxn. is exothermic, try to use up "excess" heat to re-establish equilibrium.)
 - d) In the industrial process, the stoichiometric ratio of CO to H₂ is used. If the reaction is carried out at an initial total pressure of 300. bar, what are the initial partial pressures of CO and H₂? (100. bar CO, 200. bar H₂)
- 8. A flask initially contains only NOBr gas. Once heated to a temperature T, 20.0 % of the original gas decomposes via the following equation to give a total pressure of 0.33 bar at equilibrium:

 $2\text{NOBr}(g) \implies 2\text{NO}(g) + \text{Br}_2(g)$

- a) Determine the original pressure of NOBr in the flask. (0.30 bar)
- b) What is the value of K_p at this temperature T? (1.9 x 10⁻³ or 3/1600)
- c) If the value of K_c at this temperature T is 3.9 x 10⁻⁵, determine the temperature T. (600 K)
- 9. For the equilibrium:

 $PCl_5(g) \implies PCl_3(g) + Cl_2(g)$

At some temperature T_1 , $K_p = 2.25$. An unknown quantity of pure PCl₅(g) is placed in an evacuated flask and heated to T_1 . When equilibrium was established, the partial pressure of PCl₅(g) was found to be 0.25 bar.

- a) What were the partial pressures of PCl_3 and Cl_2 at equilibrium? (0.75 bar)
- b) Determine the original pressure of PCl₅ (before any reaction) and the percent dissociation of PCl₅ at equilibrium. (1.00 bar, 75 %)
- c) What is the value of K_c for the reaction if T_1 is 327°C? (about 5 x 10⁻²)

10. For the following system:

 $C(s) + CO_2(g) \implies 2CO(g)$

At 700.°C in a 2.00 L flask there are 0.100 moles of CO, 0.200 moles of CO_2 , and 0.400 moles of C at equilibrium. At 600.°C, an additional 0.0400 moles of C forms at equilibrium.

- a) The process as written is: exothermic or **endothermic**
- b) Determine the value of K_c at 600.°C and 700.°C. (K_c = 0.0250 at 700.°C, 8.3 x 10⁻⁴ at 600.°C)
- c) An additional 0.200 moles of C is added to the flask at 600.°C. What will be the effect on:

i)	Kc	increase	decrease	no effect
ii)	Pco	increase	decrease	no effect
iii)	P _{CO2}	increase	decrease	no effect

11. Consider the equilibrium:

 $4NH_3(g) + 5O_2(g) = 4NO_2(g) + 6H_2O(l) \Delta H^\circ = -1381 \text{ kJ}$

Predict whether the equilibrium number of moles of NH₃ will increase or decrease and the direction that the reaction will shift in order to establish a new equilibrium if:

- i) the volume of the system is decreased $(\downarrow$,shifts to right)
- ii) the temperature of the system is increased $(\uparrow, \text{shifts to left})$
- iii) some O_2 is added to the container (\downarrow ,shifts to right)
- iv) some He is added to the container (no effect)
- **v**) some NH₃ is added to the container (\uparrow , shifts to right)
- vi) some H₂O is removed from the container (no effect as long as some water remains)
- 12. 0.50 moles of N_2O_4 were introduced into a 0.25 L flask. Determine the equilibrium concentrations of N_2O_4 and NO_2 if K_c for the equilibrium

 $N_2O_4(g) \implies 2NO_2$

is $5.0 \ge 10^{-7}$. (N₂O₄ = 2.0 M; NO₂ = 1.0 $\ge 10^{-3}$ M)

13. Some antimony sulfide and 500 mmol of H₂ were placed in a 500 mL flask and heated. What were the equilibrium concentrations of H₂ and H₂S once equilibrium had been reached?

 $Sb_2S_3(s) + 3H_2(g) \implies 2Sb(s) + 3H_2S(g)$ $K_c = 0.216$

 $([H_2] = 0.625 \text{ M}; [H_2S] = 0.375 \text{ M})$

14. 0.100 mol of H_2 and 0.100 mol of HI were placed in a 1.00 L container and heated. Determine the equilibrium concentrations of all species.

 $H_2(g) + I_2(g) = 2HI(g)$ $K_c = 5.0 \times 10^9$

 $([H_2] = [HI] = 0.100 \text{ M}, [I_2] = 2.0 \text{ x } 10^{-11} \text{ M})$