Math Without a Calculator

(Use this problem set to brush up on your mathematics skills; it contains examples of all the different kinds of math you'll be doing in this course. If you're looking for an extra challenge, try doing these questions without using a calculator; the hints and tips presented herein should give you all the help you need to go calculator-free.)

Dealing with powers of ten

1. $\frac{2 \times 10^{89}}{(0.010)^{2}}=$
2. $\frac{\left(5 \times 10^{55}\right)\left(4 \times 10^{23}\right)}{(0.0010)^{4}\left(2 \times 10^{5}\right)}=$
3. $\frac{\left(3 \times 10^{-3}\right)^{3}}{5 \times 10^{10}}=$
4. $\frac{3 \times 10^{-5}}{5.0 \times 0.20}=$
5. $\frac{450 \times 10^{3}}{5.0 \times 10^{-3}}=$

Dealing with In and log

If you want to try these without a calculator:
You'll have to be able to go from In (log base e) to log (log base 10) by making use of the relationship
$2.3 \log x \cong \ln x$

You'll also need to know the log of the following simple numbers:
$\log 2=0.30 \log 3=0.48 \log 4=0.60 \log 5=0.70$
$\log 6=0.78 \log 7=0.85 \log 8=0.90 \log 9=0.96$
If you know the logs of 2,3 , and 7 , you can derive the log of the other five numbers by using one of the properties of logs:
$\log (a \times b)=\log a+\log b$
6. $\log 2 \times 10^{-4}=$
7. $\log 5 \times 10^{-6}=$
8. $\log 2.4=$
9. $\log 1.5=$
10. Solve $1 \times 10^{6}=e^{x}$ for x
11. Solve $2 \times 10^{-4}=500 e^{x}$ for x

How to approximate calculations for some common constants
There are certain constants which are commonly encountered in chemical calculations in this course. For example:

1 Faraday $=96485$ coulombs $\cong 1 \times 10^{5}$ coulombs
$\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}=0.08314 \mathrm{~L} \cdot \mathrm{bar} / \mathrm{mol} \cdot \mathrm{K}=0.082057 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$
Often the gas constant is multiplied by some temperature and we'll need to estimate that product. For example:
$8.314 \times 298 \cong \frac{25}{3} \times 300 \cong 2.5 \times 10^{3}$
And
$0.082057 \times 298 \cong \frac{1}{12} \times 300 \cong 25$ (similarly, $0.08314 \times 298 \cong 25$)
Try these next problems without using a calculator. Estimate the result to one significant figure.
12. $0.082057 \times 1200 \cong$
13. $8.314 \times 1200 \cong$
14. $0.08314 \times 600 \cong$
15. $0.05916 / 3 \cong$
16. Solve $-4.5 \times 10^{3}=-(5)(96485) \varepsilon^{\circ}$ for ε°
17. $\frac{1.50 \times 10^{5}}{8.314}\left(\frac{400-300}{400 \times 300}\right) \cong$
18. Solve $\ln \left(\frac{x}{0.8}\right)=\frac{23 \times 10^{3}}{8.314}\left(\frac{100}{400 \times 300}\right)$ for x
19. Solve $1 \times 10^{6}=e^{\frac{x}{8.314 \times 300}}$ for x
20. Solve $\ln \left(\frac{x}{1 \times 10^{20}}\right)=-\frac{46000}{8.314}\left(\frac{398-298}{298 \times 398}\right)$ for x
21. Solve $4.3 \times 10^{-18}=27 x^{4}$ for x
22. Solve $1.2 \times 10^{-17}=\left(1.2 \times 10^{-3}\right)\left[\mathrm{OH}^{-}\right]^{2}$ for $\left[\mathrm{OH}^{-}\right]$

