Solubility Problems (no calculator)

You can do all of these problems with or without a calculator. Answers provided were generated without a calculator.

1. A *Mohr Titration* is a procedure for finding out the amount of Cl⁻ in a solution by titrating it with aqueous AgNO₃:

 $\operatorname{Ag}^{+}(aq) + \operatorname{Cl}^{-}(aq) \rightarrow \operatorname{AgCl}(s)$

Calculate the Ag⁺ concentration at the equivalence point, that being the point in the titration where the number of moles of added silver is equal to the moles of Cl^- ion initially present. pK_{sp}(AgCl) = -log(K_{sp}(AgCl)) = 9.74 **[about 1 x 10⁻⁵ M]**

- 2. Calculate the molar solubility of the hypothetical compound A₃B₂ (K_{sp} 1.08 x 10⁻²³) in:
 a) Water [1 x 10⁻⁵]
 - b) 0.10 M A(NO₃)₂ [About 5 x 10⁻¹¹]
- 3. The pH of a certain metal hydroxide of formula $M(OH)_3$ is 12.48 at 25°C. What is K_{sp} for the metal hydroxide? [about 2.7 x 10⁻⁷]
- 4. A solution has $[Cl^{-1}] = 1.8 \times 10^{-2} \text{ M}$ and $[Br^{-1}] = 0.010 \text{ M}$. AgNO₃ is slowly added to the solution. What will be the percent of the first ion remaining at the point of maximum separation of Br⁻ and Cl⁻¹? K_{sp}(AgBr) = 5 x 10⁻¹³, and K_{sp}(AgCl) = 1.8 x 10⁻¹⁰ [0.5% of Br⁻ remains]
- 5. $M(OH)_2(s)$ is dissolved in water to a produce a saturated solution. A 25.00 mL sample of the clear saturated solution required 10.00 mL of 0.1000 *M* HCl for its tritration. What is the K_{sp} of $M(OH)_2$? (3.2 x 10⁻⁵)
- 6. The K_{sp} of MX₃(*s*) at 27°C is 1.0 x 10⁻¹². At 52°C it is 1 x 10⁻¹¹. Calculate ΔH° for the reaction:

 $M^{3+}(aq) + 3X^{-}(aq) \implies MX_{3}(s)$ (-75 kJ/mol)

- 7. The solubility product of Ag_2CrO_4 is 1.0×10^{-12} .
 - a) Can the molar solubility of Ag_2CrO_4 be lowered to 5.0 x 10⁻⁸ by using $CrO_4^{2^-}$ as the common ion? Explain by calculating the $[CrO_4^{2^-}]$ that would be required. (No)
 - b) Can the molar solubility of Ag_2CrO_4 be lowered to 5.0 x 10⁻⁸ by using Ag^+ as the common ion? Explain by calculating the [Ag^+] that would be required. (**Yes**)