Stoichiometry problems (no calculator)

You can do these problems with or without a calculator.

1) A 2.00 g impure sample of MgO (molar mass 40.3 grams) was completely dissolved in 50.0 mL of $1.000 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. The excess acid was back-titrated with 25.0 mL of 0.800 M NaOH . Calculate the percent purity of the MgO sample. [80.6 \%]
$\mathrm{MgO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
2) A sample of $\mathrm{BaCO}_{3}(\mathrm{MM}=197.3 \mathrm{~g})$ has 20.00 mL of 0.250 M HCl added to it. A backtitration of the excess HCl required 20.00 mL of 0.1500 M NaOH . Determine the mass of the original sample of BaCO_{3}. [0.1973 g]

$$
\mathrm{BaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

3) In an analysis of $\mathrm{M}_{2} \mathrm{CO}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}, 40.00 \mathrm{~mL}$ of 2.000 M HCl was added to 7.597 g of the sample. A total of 40.00 mL of 1.000 M KOH was required to neutralize the excess acid. Calculate the molar mass of the hydrate and identify M. [379.9 g/mol, metal is Cs]
4) A sample of a sulphide of a metal M (formula $M_{a} S_{b}$) is analyzed. The sulphur in the sample is recovered as 120 mL of $0.250 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}$ solution. The metal in the sample is recovered as 40.0 mL of 0.500 M solution of the metal. If the molar mass of the metal sulphide is 150 grams, determine the formula of the sulphide and identify the metal. [$\mathbf{A l}_{2} \mathbf{S}_{\mathbf{3}}$]
5) A sample of solid sodium sulphite $\left(\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot \mathrm{XH}_{2} \mathrm{O}\right)$ of mass 0.4322 g was dissolved in water and oxidized to sodium sulphate by adding exactly 0.8000 g of I_{2}.
$\mathrm{I}_{2}(\mathrm{aq})+\mathrm{SO}_{3}^{-2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 2 \mathrm{I}^{-1}(\mathrm{aq})+\mathrm{SO}_{4}^{-2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})$
The resulting solution was then neutralized by the addition of exactly 40.00 mL of 0.100 M NaOH . Calculate the value of X. [5]
6) Calculate the molarity of the solution prepared by dissolving 6.00 g of NaOH in enough water to make 250.0 mL of solution. [$\mathbf{0 . 6 0 0} \mathrm{M}$]
7) Calculate the molarity of NaOH if 10.00 mL of the solution from the previous question is diluted to a total volume of 60.00 mL . [0.100 M]
8) How many grams of $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (molar mass 77.0 grams) are needed to make 750.0 mL of $0.666 \mathrm{M} \mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ solution? [$\mathbf{3 8 . 5} \mathrm{g}$]
9) What is the molarity of the solution formed by mixing 25.0 mL of 0.500 M NaCl solution with 75.0 mL of 0.666 M NaCl solution? [$\mathbf{0 . 6 2 5} \mathbf{~ M}$]
10) How many millilitres of $0.0500 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ are needed to react with 40.00 mL of 0.0750 M HCl ? [$\mathbf{3 0 . 0 0} \mathbf{~ m L}$]
11) A 10.00 mL sample of vinegar, an aqueous solution of acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right.$, molar mass 60.0 grams) is titrated with 0.500 M NaOH .15 .00 mL of NaOH is required to reach the end point. If the density of vinegar is $1.00 \mathrm{~g} / \mathrm{mL}$, what is the mass percent of acetic acid in the vinegar? [4.50 \%]
12) By titration 25.00 mL of 0.100 M NaOH is required to neutralize 0.1500 g of an unknown organic acid. What is the molar mass of the acid? You may assume that the acid is monoprotic. [60.0 g]
13) A 0.4861 g sample of metal was dissolved in 50.00 mL of 1.000 M HCl . After all the metal had dissolved, the leftover acid was titrated with 0.4000 M NaOH . If 25.00 mL of 0.4000 M NaOH were required to neutralize the leftover acid, what was the molar mass of the metal? The metal dissolved to form M^{+2} ions in solution. [24.3 g]
14) A piece of CaCO_{3} (molar mass 100. grams) reacts with 2.00 L of 2.50 M HCl . After dissolution of the CaCO_{3}, a 25.00 mL sample of the remaining $\mathrm{HCl}(\mathrm{aq})$ is withdrawn and titrated with 12.50 mL of 1.000 M NaOH . What must have been the mass of the piece of CaCO_{3} ? $[\mathbf{2 0 0} \mathbf{g}]$
15) An iron ore sample weighing 558.5 mg is dissolved in $\mathrm{HCl}(\mathrm{aq})$ and iron is obtained as Fe^{+2}. This solution is then titrated with 25.00 mL of $0.02000 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{aq})$. What is the $\% \mathrm{Fe}$ by mass in the ore sample? [30.00]

$$
6 \mathrm{Fe}^{+2}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}(\mathrm{aq}) \longrightarrow 6 \mathrm{Fe}^{+3}(\mathrm{aq})+2 \mathrm{Cr}^{+3}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

16) A 10.00 gram sample of a mixture of $\mathrm{CaCO}_{3}(\mathrm{~s})$ (molar mass 100 . grams) and $\mathrm{KHCO}_{3}(\mathrm{~s})$ (molar mass 100. grams) was heated and the two compounds decomposed. The decomposition yielded 90 mmol of CO_{2} and 10 mmol of $\mathrm{H}_{2} \mathrm{O}$. What percentage of the original mixture was CaCO_{3} ? [80.0]

$$
\begin{aligned}
& \mathrm{CaCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
& 2 \mathrm{KHCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{~s})
\end{aligned}
$$

17) A mixture of $\mathrm{Na}_{2} \mathrm{O}$ (molar mass 62.0 grams) and BaO (molar mass 153.3 grams) that has a mass of 5.00 g is treated with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. Barium sulphate, BaSO_{4}, precipitates from the solution, but sodium sulphate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$, is soluble and remains in solution. The BaSO_{4} (molar mass 233.3 grams) is collected by filtration and is dried and found to weigh 4.667 g . What percent of the original sample is BaO ? [61.3]
18) A mixture of aluminum and zinc containing a total of 150 mmol of the two metals was completely dissolved in acid to give 3.92 L of hydrogen gas measured at STP. (1 mol of gas $=22.4 \mathrm{~L}$ at STP) What was the mole fraction of aluminum in the original mixture? [1/3]

$$
\begin{aligned}
& 2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 3 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{Al}^{+3}(\mathrm{aq}) \\
& \mathrm{Zn}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Zn}^{+2}(\mathrm{aq})
\end{aligned}
$$

19) A mixture of $10.00 \mathrm{~mL}^{2}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 30.00 mL of HCl required 20.00 mL of 2.500 M NaOH for complete reaction. When 30.00 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 10.00 mL of HCl were used, 28.00 mL of 2.500 M NaOH were required. What were the concentrations of the acids?
[Both were 1.000 M]

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

