Chemistry 1210 Spring 2023 Test 2

Wednesday, March 1, 2023

Time: 1 hour 50 minutes

Name:

Student #: _____

This test consists of **six** pages of questions, the formula sheet, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me **immediately**. There are **37** marks available. Good luck!

- 1) **[2 marks]** The molar solubility of $Ca_3(PO_4)_2$ in water is 1.14×10^{-7} . The K_{sp} of $Ca_3(PO_4)_2$ should therefore be:
 - a) 1.92×10^{-35} c) 2.07×10^{-33} e) 7.78×10^{-14} b) 6.9×10^{-34} d) 1.3×10^{-14}
- 2) **[2 marks]** The K_{sp} of Ag₃PO₄ is 8.89 x 10⁻¹⁷, and the molar mass of Ag₃PO₄ is 418.6 grams. The number of grams of Ag₃PO₄ that will dissolve in 1 litre of 0.010 M AgNO₃ is therefore:

a)	3.0 x 10 ⁻¹⁵	c)	3.3 x 10 ⁻¹²	e)	8.9 x 10 ⁻¹¹
b)	8.9 x 10 ⁻¹⁵	d)	3.7 x 10 ⁻¹²	f)	3.7 x 10 ⁻⁸

- 3) **[4 marks]** A solution contains $[S^{2-}] = 1.0 \times 10^{-10} \text{ M}$ and $[PO_4^{3-}] = 1.0 \times 10^{-2} \text{ M}$. Solid AgNO₃ is added carefully to separate the two ions. The K_{sp}s of the two compounds formed are 8.89 x 10⁻¹⁷ (Ag₃PO₄) and 1.6 x 10⁻⁴⁹ (Ag₂S).
 - a) Which ion will precipitate first?

b) At the point of maximum separation, what will be the percent remaining of the first ion to precipitate?

- 4) [4 marks] Give the oxidation number of the oxygen atom in each of the following compounds:
 - a) F₂O _____ b) Na₂O₂ ____ c) NaOF ____ d) FOOF ____
- 5) [7 marks total] Given the following (unbalanced) redox reaction, occurring in basic solution:

 $C_6H_6 + CIO_4^{-1} \longrightarrow CO_2 + CI_2$

a) [4 marks] Balance the reaction.

- b) [1 mark] Identify the reducing agent.
- c) **[1 mark]** Identify the species which is oxidized.
- d) [1 mark] How many electrons are transferred in the overall process?

6) [5 marks total] Given the following half-reactions:

 $2IO_{3}^{-1} + 12H^{+} + 10e^{-1} \longrightarrow I_{2} + 6H_{2}O \qquad \epsilon^{\circ} = 1.20 V$ $I_{2} + 2e^{-1} \longrightarrow 2I^{-1} \qquad \epsilon^{\circ} = 0.54 V$

a) [2 marks] Write the reaction for the disproportionation of I_2 .

b) [1 mark] Will I₂ disproportionate under standard conditions? How do you know? (No marks for guessing. (3))

c) [2 marks] Calculate K_c for the disproportionation. You may assume a temperature of 25°C.

7) [9 marks total] A battery was constructed using the following half-reactions:

 $PbO_{2}(s) + 4H^{+}(aq, 6 M) + 2e^{-1} \longrightarrow Pb^{2+}(aq, 0.010 M) + 2H_{2}O(I) \qquad \epsilon^{\circ} = 1.46 V$ Al³⁺(aq, 0.20 M) + 3e⁻¹ \longrightarrow Al(s) $\epsilon^{\circ} = -1.66 V$

The battery was run at 25°C, and 2 litres of solution were used in each half-cell. Platinum electrodes were available for use as necessary.

- a) [1 mark] Which electrode will be the anode?
- b) [1 mark] Give the cell notation for the battery.
- c) [1 mark] What is the overall reaction occurring in the battery?

- d) [1 mark] What voltage will the battery produce under standard conditions?
- e) [2 marks] What voltage will the battery produce under the conditions given?

f) **[3 marks]** A current of 0.50 A was drawn from the battery for 3 hours and 13 minutes. What was the concentration of the Al³⁺ at the end of this time?

8) [4 marks] A concentration cell was assembled based on the following half-reaction:

 $Ag^{+}(aq) + e^{-1} \longrightarrow Ag(s)$

One half cell contained a 0.10 M solution of $AgNO_3$, and the other held a saturated solution of Ag_2CO_3 . The cell, when run at 35.17°C, produced 0.157 volts. What is the K_{sp} of Ag_2CO_3 at 35.17°C?