Chemistry 1210 Spring 2023 Test 3

Name: \qquad Student \#: \qquad

This test consists of ten pages of questions, the formula sheet, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me immediately. There are 51 marks (and four bonus marks) available. Good luck!

1) [2 marks] A solution has a pH of 7.1. This solution is:
a) Acidic
b) Neutral
c) Basic
d) There is not enough information to answer this question.
2) [2 marks] At $25^{\circ} \mathrm{C}$, the pH of a $5 \times 10^{-10} \mathrm{M}$ solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ should be:
a) 4.70
c) 9.00
e) None of these
b) 5.00
d) 9.30
3) [4 marks] Calculate the pH (at $25^{\circ} \mathrm{C}$) of 15.00 mL of $1.00 \times 10^{-3} \mathrm{M} \mathrm{HCl}$ mixed with 25.00 mL of $6.00 \times 10^{-4} \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$.
4) [9 marks total] Calculate the pH (at $25^{\circ} \mathrm{C}$) of the following solutions, all made with propionic acid $\left(\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right)$ and/or its salts. Propionic acid is a weak acid with a $\mathrm{K}_{\mathrm{a}}=1.34 \times 10^{-5}$.
a) [2 marks] 0.0746 M propionic acid
b) [4 marks] 10.00 mL of 1.00 M propionic acid mixed with 15.00 mL of 0.620 M NaOH
c) [3 marks] 0.134 M sodium propionate
5) [8 marks total] Calculate the pH (at $25^{\circ} \mathrm{C}$) of the following solutions, all made with trimethylamine $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right)$ and/or its salts. Trimethylamine is a weak base with a $K_{b}=6.5 \times 10^{-5}$.
a) [3 marks] 10 mL of 0.5 M trimethylamine mixed with 15 mL of 0.289 M HClO 4
b) [2 marks] A solution that has [trimethylamine] $=0.215 \mathrm{M}$ and [trimethylammonium perchlorate] $=0.139 \mathrm{M}$
c) [3 marks] A solution that has [trimethylammonium perchlorate] $=0.65 \mathrm{M}$
6) [6 marks total] Phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ is a weak triprotic acid with $\mathrm{pK}_{\mathrm{a} 1}=2.12, \mathrm{pK}_{\mathrm{a} 2}=7.21$, and $\mathrm{pK}_{\mathrm{a} 3}=12.32$. Calculate (at $25^{\circ} \mathrm{C}$) the pH of the following solutions, all made using phosphoric acid and/or its salts.
a) [4 marks] 10 mL of $1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ mixed with 15 mL of 1 M KOH
b) [2 marks] A solution containing only $\mathrm{NaH}_{2} \mathrm{PO}_{4}$.
7) [5 marks total] A $10-\mathrm{mL}$ aliquot of $1.0 \times 10^{-3} \mathrm{M} \mathrm{HCl}$ is titrated with $8.0 \times 10^{-4} \mathrm{M} \mathrm{NaOH}$. An indicator with $\mathrm{pK}_{\text {in }}=4.00$ is used.
a) [4 marks] At what added volume of NaOH will the end point be reached?
b) [1 mark] Is the indicator a suitable one for the titration? How do you know? (No marks for guessing. (:))
8) [2 marks] Indicate whether each of the following salts acts as an acid, as a base, or neither in aqueous solution. Circle your choice:

NaNO_{2}	acid	base	neither
$\mathrm{NH}_{4} \mathrm{Cl}$	acid	base	neither
KF	acid	base	neither
KI	acid	base	neither

9) [4 marks] When 1.63 grams of $\mathrm{NaOH}(40.0 \mathrm{~g} / \mathrm{mol})$ was mixed with 100.0 mL of 0.300 M $\mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{~S}=4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}, \mathrm{D}=1.00 \mathrm{~g} / \mathrm{mL}\right)$ at $22.20^{\circ} \mathrm{C}$, the temperature of the resulting solution rose to $29.06^{\circ} \mathrm{C}$. Given that the $\mathrm{H}_{2} \mathrm{SO}_{4}$ was contained in a calorimeter with $\mathrm{C}=50 \mathrm{~J} /{ }^{\circ} \mathrm{C}$, calculate $\Delta \mathrm{H}^{\circ}$ for the reaction:
$2 \mathrm{NaOH}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
10) [3 marks total] Given the following reactions:

$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$	$\Delta \mathrm{H}^{\circ}=-94.5 \mathrm{~kJ}$
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}^{\circ}=484 \mathrm{~kJ}$
$2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\Delta \mathrm{H}^{\circ}=-3120.8 \mathrm{~kJ}$

a) [2 marks] Calculate ΔH° for the reaction

$$
2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2.5 \mathrm{O}_{2}(\mathrm{~g})
$$

b) [1 mark] What is the enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$? Give your answer in $\mathrm{kJ} / \mathrm{mol}$.
11) [2 marks] Given the reaction
$2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta \mathrm{H}^{\circ}=-1453.56$

And that the molar enthalpies of formation of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are -393.52 kJ and -285.83 kJ respectively, calculate the molar enthalpy of formation of $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})$.
12) [4 marks] When 324.4 mg of $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})(32.04 \mathrm{~g} / \mathrm{mol})$ is burned in a bomb calorimeter with $\mathrm{C}=10.0 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$, the temperature of the calorimeter increases from $25.0000^{\circ} \mathrm{C}$ to $25.7346^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}^{\circ}$ for the reaction
$2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
[BONUS - 4 marks] It takes 5.0144 g of $\mathrm{FeX}_{\mathrm{n}}$ to lower the freezing point of 100 g of water ($\mathrm{K}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} / \mathrm{molal}$) by $2.3^{\circ} \mathrm{C}$. It takes 6.4125 g of $\mathrm{RuX} \mathrm{X}_{\mathrm{n}}$ (same X , same n) to lower the freezing point of 100 g of water by $2.3^{\circ} \mathrm{C}$. What are the element X and the value of n ? You may assume that both $\mathrm{FeX}_{\mathrm{n}}$ and $\mathrm{Ru} \mathrm{X}_{\mathrm{n}}$ ionize completely in water.

