Chemistry 1210 Spring 2023 Test 3

Wednesday, March 29, 2023

Time: 1 hour 50 minutes

Name:		
-------	--	--

Student #: _____

This test consists of **ten** pages of questions, the formula sheet, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me **immediately**. There are **51** marks (and four bonus marks) available. Good luck!

- 1) [2 marks] A solution has a pH of 7.1. This solution is:
 - a) Acidic
 - b) Neutral
 - c) Basic
 - d) There is not enough information to answer this question.
- 2) [2 marks] At 25°C, the pH of a 5 x 10^{-10} M solution of Ca(OH)₂ should be:
 - a) 4.70 c) 9.00 e) None of these
 - b) 5.00 d) 9.30
- 3) **[4 marks]** Calculate the pH (at 25°C) of 15.00 mL of 1.00×10^{-3} M HCl mixed with 25.00 mL of 6.00×10^{-4} M Mg(OH)₂.

- 4) **[9 marks total]** Calculate the pH (at 25°C) of the following solutions, all made with propionic acid (HC₃H₅O₂) and/or its salts. Propionic acid is a weak acid with a $K_a = 1.34 \times 10^{-5}$.
 - a) [2 marks] 0.0746 M propionic acid

b) [4 marks] 10.00 mL of 1.00 M propionic acid mixed with 15.00 mL of 0.620 M NaOH

c) [3 marks] 0.134 M sodium propionate

- 5) **[8 marks total]** Calculate the pH (at 25°C) of the following solutions, all made with trimethylamine ((CH₃)₃N) and/or its salts. Trimethylamine is a weak base with a $K_b = 6.5 \times 10^{-5}$.
 - a) [3 marks] 10 mL of 0.5 M trimethylamine mixed with 15 mL of 0.289 M HClO₄

b) **[2 marks]** A solution that has [trimethylamine] = 0.215 M and [trimethylammonium perchlorate] = 0.139 M

c) [3 marks] A solution that has [trimethylammonium perchlorate] = 0.65 M

- 6) **[6 marks total]** Phosphoric acid (H_3PO_4) is a weak triprotic acid with $pK_{a1} = 2.12$, $pK_{a2} = 7.21$, and $pK_{a3} = 12.32$. Calculate (at 25°C) the pH of the following solutions, all made using phosphoric acid and/or its salts.
 - a) [4 marks] 10 mL of 1 M H_3PO_4 mixed with 15 mL of 1 M KOH

b) [2 marks] A solution containing only NaH₂PO₄.

- 7) [5 marks total] A 10-mL aliquot of 1.0×10^{-3} M HCl is titrated with 8.0×10^{-4} M NaOH. An indicator with pK_{in} = 4.00 is used.
 - a) [4 marks] At what added volume of NaOH will the end point be reached?

b) **[1 mark]** Is the indicator a suitable one for the titration? How do you know? (No marks for guessing. (3))

8) [2 marks] Indicate whether each of the following salts acts as an acid, as a base, or neither in aqueous solution. Circle your choice:

NaNO ₂	acid	base	neither
NH ₄ Cl	acid	base	neither
KF	acid	base	neither
KI	acid	base	neither

9) [4 marks] When 1.63 grams of NaOH (40.0 g/mol) was mixed with 100.0 mL of 0.300 M H_2SO_4 (S = 4.184 J/g·°C, D = 1.00 g/mL) at 22.20°C, the temperature of the resulting solution rose to 29.06°C. Given that the H_2SO_4 was contained in a calorimeter with C = 50 J/°C, calculate ΔH° for the reaction:

 $2NaOH(s) + H_2SO_4(aq) \longrightarrow Na_2SO_4(aq) + 2H_2O(I)$

10) [3 marks total] Given the following reactions:

a) **[2 marks]** Calculate ΔH° for the reaction

 $2CO_2(g) + H_2O(g) \longrightarrow C_2H_2(g) + 2.5O_2(g)$

b) [1 mark] What is the enthalpy of formation of H₂O(g)? Give your answer in kJ/mol.

11) [2 marks] Given the reaction

 $2CH_3OH(I) + 3O_2(g) \longrightarrow 2CO_2(g) + 4H_2O(I) \Delta H^\circ = -1453.56$

And that the molar enthalpies of formation of CO_2 and H_2O are -393.52 kJ and -285.83 kJ respectively, calculate the molar enthalpy of formation of $CH_3OH(I)$.

12) **[4 marks]** When 324.4 mg of CH₃OH(I) (32.04 g/mol) is burned in a bomb calorimeter with C = 10.0 kJ/°C, the temperature of the calorimeter increases from 25.0000°C to 25.7346°C. Calculate Δ H° for the reaction

2CH₃OH(I) + 3O₂(g) → 2CO₂(g) + 4H₂O(I)

[BONUS – 4 marks] It takes 5.0144 g of FeX_n to lower the freezing point of 100 g of water ($K_f = 1.86$ °C/molal) by 2.3°C. It takes 6.4125 g of RuX_n (same X, same n) to lower the freezing point of 100 g of water by 2.3°C. What are the element X and the value of n? You may assume that both FeX_n and RuX_n ionize completely in water.