## Chemistry 1210 Spring 2024 Test 1

Friday, February 2, 2024
Time: 1 hour 50 minutes

Name: $\qquad$ Student \#: $\qquad$

This test consists of nine pages of questions, the formula sheet, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me immediately. There are $\mathbf{3 5 . 5}$ marks available. Good luck!

1) [9.5 marks total] For the reaction
$3 \mathrm{~A}+2 \mathrm{~B} \longrightarrow \mathrm{C}+6 \mathrm{D}$
The following data were collected:

| Run | $[\mathrm{A}](\mathrm{M})$ | $[\mathrm{B}](\mathrm{M})$ | $\frac{\Delta[B]}{\Delta t}\left(\frac{M}{S}\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.1 | 0.2 | $-5.091 \times 10^{-5}$ |
| 2 | 0.2 | 0.2 | $-1.440 \times 10^{-4}$ |
| 3 | 0.3 | 0.3 | $-3.240 \times 10^{-4}$ |

a) [2 marks] Determine the rate law for the reaction.
b) [ 3 marks] Determine the rate constant for the reaction. Include units.
c) [1 mark] What will be the value of $\frac{\Delta[D]}{\Delta t}$ (in $\mathrm{M} / \mathrm{s}$ ) in run 3?
d) [2 marks] This reaction cannot occur in a single step. Give two reasons why.
e) [0.5 marks] What is the overall order of the reaction kinetics?
f) [1 mark] What is the order of the reaction kinetics with respect to compound C? How do you know? (No marks for guessing. (:))
2) [10 marks total] The following mechanism has been proposed for the decomposition of ozone in the atmosphere:

$$
\begin{gathered}
\mathrm{Cl} \cdot+\mathrm{O}_{3} \stackrel{\mathrm{k}_{1}}{\underset{\mathrm{k}_{2}}{ }} \mathrm{ClO} \cdot+\mathrm{O}_{2} \quad \text { (fast) } \\
\mathrm{ClO} \cdot+\mathrm{O}_{3} \xrightarrow{\mathrm{k}_{3}} \mathrm{Cl} \cdot+2 \mathrm{O}_{2} \quad \text { (slow) }
\end{gathered}
$$

a) [1 mark] What is the overall reaction for the decomposition of ozone?
b) [0.5 marks] Are there any catalysts? If so, what are they?
c) [0.5 marks] Are there any reactive intermediates? If so, what are they?
d) [1 mark] If you add more ozone $\left(\mathrm{O}_{3}\right)$ to the reaction above, the rate will increase, but past a certain amount of added ozone the rate will not increase any more. Why? (No marks for guessing. ©)
e) [2 marks] What rate law is predicted by the mechanism?
f) [1 mark] If the experimental rate law was determined to be rate $=\mathrm{k}\left[\mathrm{O}_{3}\right]\left[\mathrm{O}_{2}\right]^{-1}$, would the mechanism above be "good"? How do you know? (No marks for guessing. :))
g) [4 marks] Sketch (not necessarily to scale) the energy diagram for the mechanism above. On your graph, be sure to include:
i) [0.5 marks] Proper axes labels with appropriate units.
ii) [2 marks] The appropriate number of energy barriers.
iii) [ 0.5 marks] The appropriate relative heights for the energy barriers.
iv) [0.5 marks] A label for the forward activation energy for each step.
v) [ 0.5 marks] The proper relative energies of reactants and products for each step. Assume that both steps are exothermic.
3) [2 marks] For a certain reaction, a plot of Ink vs. 1/T was made. The $y$-intercept was found to be 21.4313 , and the slope was -6013.62 K . Determine the rate constant for the reaction at $26.85^{\circ} \mathrm{C}$, including units for the rate constant. Assume the reaction is first order.
4) [2 marks] A certain reaction runs 1.90909 times faster at $36.85^{\circ} \mathrm{C}$ than it does at $26.85^{\circ} \mathrm{C}$. What is the energy of activation for the reaction? Give your answer in $\mathrm{kJ} / \mathrm{mol}$.
5) [3 marks] For a certain reaction a plot of $1 /[\mathrm{A}]_{t}$ vs. $t$ resulted in a straight line with a slope of $0.25 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and a y -intercept of $10 \mathrm{M}^{-1}$. Find the half-life of the reaction.
6) [ $\mathbf{2}$ marks] The (radioactive) breakdown of elements follows first-order kinetics. One element that breaks down this way is Technitium-96, which has a half-life of 4.3 days. How many hours will it take for 10 percent of a sample of Technitium- 96 to break down?
7) [1 mark] Write a reaction for which the equilibrium expression is $K=P_{c o z}, \mathrm{e}$.
8) [6 marks] For the reaction:

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \mathrm{K}_{\mathrm{p}}=9.4 \times 10^{88} \text { at } 250^{\circ} \mathrm{C}
$$

a) Calculate $\mathrm{K}_{\mathrm{c}}$ at $250^{\circ} \mathrm{C}$
b) Calculate the value of $K_{p}$ for the reaction

$$
2 \mathrm{NO}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+2.5 \mathrm{O}_{2}(\mathrm{~g})
$$

c) Given the additional reaction

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=9.8 \times 10^{-41} \text { at } 250^{\circ} \mathrm{C}
$$

Calculate $\mathrm{K}_{\mathrm{p}}$ for the reaction
$4 \mathrm{NH}_{3}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2}(\mathrm{~g})$

