Chemistry 1210 Spring 2024 Test 2

Friday, March 1, 2024
Time: 1 hour 50 minutes

Name: \qquad Student \#: \qquad
This test consists of six pages of questions, the formula sheet, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me immediately. There are $\mathbf{3 7 . 5}$ marks available. Good luck!

1) [2 marks] A certain reaction has $\Delta H^{\circ}=65.0 \mathrm{~kJ} / \mathrm{mol}$ and $K=50.0$ at $25^{\circ} \mathrm{C}$. What will be its value of K at $50^{\circ} \mathrm{C}$?
a) 50.1
c) 3.09×10^{8}
e) None of these
b) 380.1
d) 1.25×10^{88}
2) [2 marks] The normal boiling point of hexane is $68.75^{\circ} \mathrm{C}$, and its enthalpy of vaporization is $31 \mathrm{~kJ} / \mathrm{mol}$. It's vapour pressure at $22^{\circ} \mathrm{C}$ will be:
a) 7.33×10^{-73} torr
b) 6.78×10^{-48} torr
c) 7.51×10^{-3} torr
d) 135.1 torr
e) 758.7 torr
3) [5 marks total] A 10-litre flask was charged with 5 moles of $\mathrm{H}_{2}, 5$ moles of Cl_{2}, and 10 moles of HCl , and the equilibrium
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{p}}=0.25 @ 27.53^{\circ} \mathrm{C}$
established.
a) [1 mark] In which direction did the reaction shift to attain equilibrium? How do you know? (No marks for guessing. (:))
b) [4 marks] What were the equilibrium pressures of all species?
4) [4 marks] A flask was charged with 4.0×10^{-4} bar of CO_{2} and the equilibrium $\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=4.0 \times 10^{-26}$
established. Calculate the equilibrium pressures of all species.
5) [6 marks] The $\mathrm{K}_{\text {sp }}$ of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ is 1.2×10^{-5}. How many grams of $\mathrm{Ag}_{2} \mathrm{SO}_{4}(311.8 \mathrm{~g} / \mathrm{mol})$ will dissolve in half a litre of:
a) water
b) a solution with $\left[\mathrm{AgNO}_{3}\right]=0.100 \mathrm{M}$
6) [3 marks] You have a solution with $\left[\mathrm{CO}_{3}^{2-}\right]=3.28 \times 10^{-3} \mathrm{M}$ and $\left[\mathrm{Cl}^{-}\right]=1.7 \times 10^{-5} \mathrm{M}$. You choose to separate these two anions by adding solid AgNO_{3}. The $\mathrm{K}_{\text {sp }}$ of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ is 8.2×10^{-12}, and the $\mathrm{K}_{\text {sp }}$ of AgCl is 1.7×10^{-10}. At the point of maximum separation, what percent of the first of the two anions to precipitate will remain in solution?
7) [4 marks] Give the oxidation number of oxygen in the following molecules or ions:
a) O_{2} \qquad b) HOF \qquad c) OF_{2}
d) $\mathrm{H}_{2} \mathrm{O}_{2}$ \qquad
8) [5.5 marks] Given the following redox reaction, occurring in basic solution:

$$
\mathrm{Al}+\mathrm{ClO}_{4}^{-1} \longrightarrow \mathrm{Al}(\mathrm{OH})_{4}^{-1}+\mathrm{Cl}^{-1}
$$

a) [4 marks] Balance the reaction.
b) [0.5 marks] Which species is oxidized?
c) [0.5 marks] Which species is the reducing agent?
d) [0.5 marks] How many electrons are transferred in the overall reaction?
9) [3 marks] Given the half-reactions:

```
NO2+H+
2HNO}2+4\mp@subsup{\textrm{H}}{}{+}+4\mp@subsup{\textrm{e}}{}{-1}\rightleftharpoons\mp@subsup{\textrm{N}}{2}{}\textrm{O}+3\mp@subsup{\textrm{H}}{2}{}\textrm{O}\quad\mp@subsup{\varepsilon}{}{\circ}=1.297\textrm{V
calculate }\mp@subsup{\varepsilon}{}{\circ}\mathrm{ for:
2NOO2+6H+}+6\mp@subsup{\textrm{e}}{}{-1}\rightleftharpoons\mp@subsup{\textrm{N}}{2}{}\textrm{O}+3\mp@subsup{\textrm{H}}{2}{}\textrm{O
```

10) [3 marks] Given the half-reactions:

$$
\begin{array}{ll}
\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-1} \rightleftharpoons \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} & \varepsilon^{\circ}=1.23 \mathrm{~V} \\
\mathrm{MnO}_{4}^{-1}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-1} \rightleftharpoons \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O} & \varepsilon^{\circ}=1.70 \mathrm{~V}
\end{array}
$$

Will MnO_{2} disproportionate? Calculate ε° for the disproportionation to prove your answer.

