Chemistry 1210 Spring 2024 Test 2

Friday, March 1, 2024

Time: 1 hour 50 minutes

Name:	
-------	--

Student #: _____

This test consists of **six** pages of questions, the formula sheet, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me **immediately**. There are **37.5** marks available. Good luck!

- 1) [2 marks] A certain reaction has $\Delta H^{\circ} = 65.0 \text{ kJ/mol}$ and K = 50.0 at 25°C. What will be its value of K at 50°C?
 - a) 50.1 c) 3.09 x 10⁸ e) None of these b) 380.1 d) 1.25 x 10⁸⁸
- [2 marks] The normal boiling point of hexane is 68.75°C, and its enthalpy of vaporization is 31 kJ/mol. It's vapour pressure at 22°C will be:
 - a) 7.33×10^{-73} torr c) 7.51×10^{-3} torr e) 758.7 torr
 - b) 6.78 x 10⁻⁴⁸ torr d) 135.1 torr

3) [5 marks total] A 10-litre flask was charged with 5 moles of H₂, 5 moles of Cl₂, and 10 moles of HCl, and the equilibrium

 $H_2(g) + Cl_2(g) \implies 2HCl(g) \qquad K_p = 0.25 @ 27.53^{\circ}C$

established.

a) **[1 mark]** In which direction did the reaction shift to attain equilibrium? How do you know? (No marks for guessing. (3))

b) [4 marks] What were the equilibrium pressures of all species?

4) [4 marks] A flask was charged with 4.0×10^{-4} bar of CO₂ and the equilibrium

 $CO_2(g) = CO(g) + \frac{1}{2}O_2(g)$ $K_p = 4.0 \times 10^{-26}$

established. Calculate the equilibrium pressures of all species.

- 5) **[6 marks]** The K_{sp} of Ag_2SO_4 is 1.2 x 10⁻⁵. How many grams of Ag_2SO_4 (311.8 g/mol) will dissolve in **half a litre** of:
 - a) water

b) a solution with [AgNO₃] = 0.100 M

6) **[3 marks]** You have a solution with $[CO_3^{2-}] = 3.28 \times 10^{-3}$ M and $[Cl^-] = 1.7 \times 10^{-5}$ M. You choose to separate these two anions by adding solid AgNO₃. The K_{sp} of Ag₂CO₃ is 8.2 x 10⁻¹², and the K_{sp} of AgCl is 1.7 x 10⁻¹⁰. At the point of maximum separation, what percent of the first of the two anions to precipitate will remain in solution?

- 7) [4 marks] Give the oxidation number of oxygen in the following molecules or ions:
 - a) O₂_____ b) HOF_____ c) OF₂____ d) H₂O₂____
- 8) [5.5 marks] Given the following redox reaction, occurring in basic solution:

 $AI + CIO_4^{-1} \longrightarrow AI(OH)_4^{-1} + CI^{-1}$

a) [4 marks] Balance the reaction.

- b) [0.5 marks] Which species is oxidized?
- c) [0.5 marks] Which species is the reducing agent?
- d) [0.5 marks] How many electrons are transferred in the overall reaction?

9) [3 marks] Given the half-reactions:

calculate ϵ° for:

 $2NO_2 + 6H^+ + 6e^{-1} \implies N_2O + 3H_2O$

10) [3 marks] Given the half-reactions:

 $\begin{array}{c} MnO_2 + 4H^+ + 2e^{-1} & \longrightarrow & Mn^{2+} + 2H_2O \\ MnO_4^{-1} + 4H^+ + 3e^{-1} & \longrightarrow & MnO_2 + 2H_2O \\ \end{array} \quad \epsilon^\circ = 1.70 \text{ V} \end{array}$

Will MnO₂ disproportionate? Calculate ε° for the disproportionation to prove your answer.