Chemistry 1210 Spring 2024 Test 3

Wednesday, March 27, 2024 Name:		Time: 1 hour 50 minutes	
		Student #:	
en	nis test consists of ten pages of questions, the forn sure that you have a complete test and, if you do here are 43 marks available. Good luck!	•	
1)	[11 marks total] A battery was constructed usin	g the following half-reactions:	
	$Mg^{2+}(aq, 0.10 M) + 2e^{-1} \longrightarrow Mg(s)$ $Cl_2(g, 0.010 bar) + 2e^{-1} \longrightarrow 2Cl^{-1}(aq, 10 M)$	ε° = -2.36 V ε° = 1.36 V	
	Platinum electrodes were available where neceseach half cell. The battery was run at 25°C.	ssary, and 3 litres of solution were used in	
	a) [1 mark] Write the overall reaction occurrin	g in the battery.	
	b) [1 mark] Calculate ϵ° for the battery.		
	c) [2 marks] Calculate K for the battery.		

d)	[2 marks] What voltage will the battery generate under the conditions given?
e)	[1 mark] Give the cell notation for the battery.
f)	[3 marks] A current of 2.0 amperes was drawn from the battery for 16 hours, 4 minutes and 51.2 seconds. What was the [Mg ²⁺] after that time?

g) [1 mark] This battery cannot be recharged successfully. Why? (No marks for guessing.

2) [4 marks] A concentration cell was set up using the half-reaction:

$$2H^{+}(aq) + 2e^{-1} \longrightarrow H_{2}(g)$$

Both half-cells had the pressure of H_2 set to 0.20 bar. In one of the half cells the [H $^+$] was 0.10 M, and in the other the H $^+$ was generated by a 0.035 M solution of a weak acid. The concentration cell was run at 10.06°C. If the battery so constructed generated 46.3 mV, what was the K_a of the weak acid?

3)) [1 mark] Which of the following species is most likely to be amphiprotic?			
	a) NH ₃	b) H ₃ PO ₄	c) C ₂ H ₃ O ₂ ⁻¹	d) H ₂ AsO ₄ ⁻¹
4)	[2 marks] When K _w = 1.	0×10^{-13} , the pH of a 3 x	10 ⁻¹⁰ M solution of Mg(OH)₂ is closest to

e) 9.52

f) None of these

5) [11 marks total] Calculate the pH of the following solutions, all made at 25°C:

c) 6.50

d) 9.22

a) 3.48

b) 3.78

a) [3 marks] 10.0 mL of $1.0 \times 10^{-3} \text{ M}$ HBr mixed with 15.0 mL of $5.0 \times 10^{-4} \text{ M}$ KOH.

b) [3 marks] 10.0 mL of a solution that has [HA] = 0.20 M and [NaA] = 0.10 M mixed with 15.0 mL of 0.05 M NaOH. HA is a weak acid with a $K_a = 1.40 \times 10^{-4}$

c) [3 marks] 0.014 M NaA (same weak acid as in (b)).

d) [2 marks] 10.0 mL of 0.20 M NH $_3$ (K_b = 1.74 x 10 $^{-5}$) mixed with 15.0 mL of 0.1335 M HI.

6)	[14 marks total] H_2A is a weak acid with $K_{a1} = 2.5 \times 10^{-4}$ and $K_{a2} = 4.0 \times 10^{-9}$. Calculate the plane
	of the following solutions made using H ₂ A and/or its salts at 25°C.

a) [3 marks] 10.0 mL of 0.18 M H_2A mixed with 15.0 mL of 0.30 M NaHA.

b) [2 marks] 15.0 mL of 0.30 M NaHA

c)	[4 marks] 10.0 mL of 0.21 M H_2A mixed with 15.0 mL of 0.18 M NaOH	
d)	[1 mark] What would be the pK_a for an indicator that you would use for the titration of H_2A ? How do you know? (No marks for guessing. (3))	

- e) [4 marks] Sketch the titration curve you would expect to see for H₂A being titrated by NaOH. On your graph, indicate:
 - i) The equivalence point or points
 - ii) The buffer region or regions
 - iii) The region or regions on the graph where the pH is controlled by OH-
 - iv) The point or points on the graph where the pH is controlled by one amphiprotic species.