Name: \qquad Student \#: \qquad

This test consists of ten pages of questions, the formula sheet, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me immediately. There are $\mathbf{4 3}$ marks available. Good luck!

1) [11 marks total] A battery was constructed using the following half-reactions:
$\mathrm{Mg}^{2+}(\mathrm{aq}, 0.10 \mathrm{M})+2 \mathrm{e}^{-1} \rightleftharpoons \mathrm{Mg}(\mathrm{s})$
$\mathrm{Cl}_{2}(\mathrm{~g}, 0.010 \mathrm{bar})+2 \mathrm{e}^{-1} \rightleftharpoons 2 \mathrm{Cl}^{-1}(\mathrm{aq}, 10 \mathrm{M})$

$$
\begin{aligned}
& \varepsilon^{\circ}=-2.36 \mathrm{~V} \\
& \varepsilon^{\circ}=1.36 \mathrm{~V}
\end{aligned}
$$

Platinum electrodes were available where necessary, and 3 litres of solution were used in each half cell. The battery was run at $25^{\circ} \mathrm{C}$.
a) [1 mark] Write the overall reaction occurring in the battery.
b) [1 mark] Calculate ε° for the battery.
c) [2 marks] Calculate K for the battery.
d) [2 marks] What voltage will the battery generate under the conditions given?
e) [1 mark] Give the cell notation for the battery.
f) [3 marks] A current of 2.0 amperes was drawn from the battery for 16 hours, 4 minutes, and 51.2 seconds. What was the $\left[\mathrm{Mg}^{2+}\right]$ after that time?
g) [1 mark] This battery cannot be recharged successfully. Why? (No marks for guessing. (:)
2) [4 marks] A concentration cell was set up using the half-reaction:
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-1} \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})$
Both half-cells had the pressure of H_{2} set to 0.20 bar. In one of the half cells the [H^{+}] was 0.10 M , and in the other the H^{+}was generated by a 0.035 M solution of a weak acid. The concentration cell was run at $10.06^{\circ} \mathrm{C}$. If the battery so constructed generated 46.3 mV , what was the K_{a} of the weak acid?
3) [1 mark] Which of the following species is most likely to be amphiprotic?
a) NH_{3}
b) $\mathrm{H}_{3} \mathrm{PO}_{4}$
c) $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-1}$
d) $\mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{-1}$
4) [2 marks] When $\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-13}$, the pH of a $3 \times 10^{-10} \mathrm{M}$ solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ is closest to:
a) 3.48
c) 6.50
e) 9.52
b) 3.78
d) 9.22
f) None of these
5) [11 marks total] Calculate the pH of the following solutions, all made at $25^{\circ} \mathrm{C}$:
a) [3 marks] 10.0 mL of $1.0 \times 10^{-3} \mathrm{M} \mathrm{HBr}$ mixed with 15.0 mL of $5.0 \times 10^{-4} \mathrm{M} \mathrm{KOH}$.
b) [3 marks] 10.0 mL of a solution that has $[\mathrm{HA}]=0.20 \mathrm{M}$ and $[\mathrm{NaA}]=0.10 \mathrm{M}$ mixed with 15.0 mL of 0.05 M NaOH . HA is a weak acid with a $\mathrm{K}_{\mathrm{a}}=1.40 \times 10^{-4}$
c) [3 marks] 0.014 M NaA (same weak acid as in (b)).
d) [2 marks] 10.0 mL of $0.20 \mathrm{M} \mathrm{NH}_{3}\left(\mathrm{~K}_{\mathrm{b}}=1.74 \times 10^{-5}\right)$ mixed with 15.0 mL of 0.1335 M HI .
6) [14 marks total] $\mathrm{H}_{2} \mathrm{~A}$ is a weak acid with $\mathrm{K}_{\mathrm{a} 1}=2.5 \times 10^{-4}$ and $\mathrm{K}_{\mathrm{a} 2}=4.0 \times 10^{-9}$. Calculate the pH of the following solutions made using $\mathrm{H}_{2} \mathrm{~A}$ and/or its salts at $25^{\circ} \mathrm{C}$.
a) [3 marks] 10.0 mL of $0.18 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ mixed with 15.0 mL of 0.30 M NaHA .
b) [2 marks] 15.0 mL of 0.30 M NaHA
c) [4 marks] 10.0 mL of $0.21 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ mixed with 15.0 mL of 0.18 M NaOH
d) [1 mark] What would be the pK_{a} for an indicator that you would use for the titration of $\mathrm{H}_{2} \mathrm{~A}$? How do you know? (No marks for guessing. (:))
e) [4 marks] Sketch the titration curve you would expect to see for $\mathrm{H}_{2} \mathrm{~A}$ being titrated by NaOH . On your graph, indicate:
i) The equivalence point or points
ii) The buffer region or regions
iii) The region or regions on the graph where the pH is controlled by OH^{-}
iv) The point or points on the graph where the pH is controlled by one amphiprotic species.

