Chemistry 1210 Spring 2024 Test 3

Wednesday, March 27, 2024

Time: 1 hour 50 minutes

Name: ANSWERS

Student #: _____

This test consists of **ten** pages of questions, the formula sheet, and a periodic table. Please ensure that you have a complete test and, if you do not, obtain one from me **immediately**. There are **43** marks available. Good luck!

1) [11 marks total] A battery was constructed using the following half-reactions:

$$Mg^{2+}(aq, 0.10 M) + 2e^{-1} \longrightarrow Mg(s)$$
 $\epsilon^{\circ} = -2.36 V$ $Cl_2(g, 0.010 bar) + 2e^{-1} \longrightarrow 2Cl^{-1}(aq, 10 M)$ $\epsilon^{\circ} = 1.36 V$

Platinum electrodes were available where necessary, and 3 litres of solution were used in each half cell. The battery was run at 25°C.

a) [1 mark] Write the overall reaction occurring in the battery.

Mg = Mg²⁺ + 2e⁻
$$\varepsilon$$
° = +2.36V
Cl₂+2e⁻ \geq 2Cl⁻ ε ° = +1.36V
Mg + Cl₂ \geq Mg²⁺ + 2Cl⁻
b) [1 mark] Calculate ε ° for the battery.

c) [2 marks] Calculate K for the battery.

$$E^{\circ}_{z} = 0.059159 \log K$$

$$= \log K = 125.762...$$

$$So K = 5.79 \times 10^{125}$$

d) [2 marks] What voltage will the battery generate under the conditions given?

$$E = 3.72 - 0.059159$$
 $\log \left(\frac{0.1 \times 10^2}{0.01} \right)$

e) [1 mark] Give the cell notation for the battery.

Mg(5) | Mg24(aq, 0.1 M) | C/2(g, 0.01 bar) | C17(aq, 10 M) | Pf(5)

f) [3 marks] A current of 2.0 amperes was drawn from the battery for 16 hours, 4 minutes, and 51.2 seconds. What was the [Mg²⁺] after that time?

16 ×3600 4 × 60 51,2

57891.25

57891,25 × 2 coul × 1 mole × 1 mg² × 1 mg² × 96,485.33212 cont 2e

= 0.6 moles Mg24 created

So (Mg24) > 0.1 moles x3L + 0.6 moles

g) [1 mark] This battery cannot be recharged successfully. Why? (No marks for guessing. (3))

Water will both oxidize before Cland reduce befor Mg (more positive E's for it). 2) [4 marks] A concentration cell was set up using the half-reaction:

$$2H^{+}(aq) + 2e^{-1} \longrightarrow H_{2}(g)$$

Both half-cells had the pressure of H_2 set to 0.20 bar. In one of the half cells the $[H^+]$ was 0.10 M, and in the other the H^+ was generated by a 0.035 M solution of a weak acid. The concentration cell was run at 10.06°C. If the battery so constructed generated 46.3 mV, what was the K_a of the weak acid?

$$H_{2}(0.2) = 2H^{+}(XM) + 2e^{-}$$

 $2H^{+}(XM) + 2e^{-} = H_{2}(0.2)$

$$46.3 \times 10^{-3} = 0 - \frac{(8.314462618)(283.21)}{2.96,485.33212} ln Q$$

$$= \frac{\chi^2}{0.0^2} \Rightarrow \chi = 0.015 \text{ M} + 1^4$$

It all came from HA.

$$K_{a} = \frac{(0.015)^{2}}{(0.02)} = 0.01125$$

- a) NH₃
- b) H₃PO₄
- c) C₂H₃O₂⁻¹

4) [2 marks] When $K_w = 1.0 \times 10^{-13}$, the pH of a 3 x 10^{-10} M solution of Mg(OH)₂ is closest to:

- a) 3.48
- (c) 6.50
- e) 9.52

- b) 3.78
- d) 9.22
- f) None of these

5) [11 marks total] Calculate the pH of the following solutions, all made at 25°C:

a) [3 marks] 10.0 mL of $1.0 \times 10^{-3} \text{ M}$ HBr mixed with 15.0 mL of $5.0 \times 10^{-4} \text{ M}$ KOH.

CHBM=10 x 1×10-3= 4×10-9M

[KOH]= 15 x5x10-4= 3x10-4M

 $HBr \rightarrow H^{+}rBr$ $4x10^{-4}$ $KOH \rightarrow K^{+}rOH^{-}$ $2x10^{-4}$

PH (by DCSC) = -log(1x10-4) = 4.0

H++ OH -> H20

4x10 3x10 4

-3x10 -3x10 4

1x10 4

b) [3 marks] 10.0 mL of a solution that has [HA] = 0.20 M and [NaA] = 0.10 M mixed with 15.0 mL of 0.05 M NaOH. HA is a weak acid with a $K_a = 1.40 \times 10^{-4}$

$$[HA] = \frac{10}{25} \times 0.2 = 0.08M$$

$$[NaA] = \frac{10}{25} = 0.1 = 0.04M$$

$$[NaA] = \frac{10}{25} = 0.1 = 0.04M$$

$$[NaOH] = \frac{15}{25} \times 0.05 = 0.03M$$

$$0.03 \quad 0.08 \quad 0.04$$

$$-0.03 \quad -0.03 \quad +0.09$$

$$0.05 \quad 0.07$$

$$0.03 \quad 0.08 \qquad 0.04 \\
-0.03 \quad -0.03 \qquad +0.09 \\
\hline
0 \quad 0.05 \quad 0.07$$

c) [3 marks] 0.014 M NaA (same weak acid as in (b)).

NaA
$$\rightarrow$$
 Na⁺ + A
0.014
0.019
0.019
0.019
0.019
100019
100019

$$\frac{x^{2}}{0.014x} = \frac{1 \times 10^{-14}}{1.4 \times 10^{-4}}$$

$$\Rightarrow x = [04]_{e} = 1 \times 10^{-6}$$

$$\Rightarrow 0.014x$$

$$\Rightarrow x = [04]_{e} = 1 \times 10^{-6}$$

$$\Rightarrow 0.014x$$

$$\Rightarrow x = [04]_{e} = 1 \times 10^{-6}$$

$$\Rightarrow 0.014x$$

$$\Rightarrow x = [04]_{e} = 1 \times 10^{-6}$$

$$\Rightarrow 0.014x$$

$$\Rightarrow x = [04]_{e} = 1 \times 10^{-6}$$

$$\Rightarrow 0.014x$$

$$\Rightarrow x = [04]_{e} = 1 \times 10^{-6}$$

$$\Rightarrow 0.014x$$

d) [2 marks] 10.0 mL of 0.20 M NH₃ ($K_b = 1.74 \times 10^{-5}$) mixed with 15.0 mL of 0.1335 M HI.

$$[NH_3] = 10 \times 0.2 = 0.08M$$

 $[HI] = 15 \times 0.1335 = 0.0801 M$
 $HI \rightarrow H^+ + T^-$
 0.0801

$$\begin{array}{c}
 NH_3 + H^+ \longrightarrow NH_4^+ \\
 0.08 \quad 0.0801 \\
 -0.08 \quad -0.08 \quad +0.08 \\
\hline
 0 \quad 1 \times 10^{-4} \quad 0.08
 \end{array}$$

- 6) [14 marks total] H_2A is a weak acid with $K_{a1} = 2.5 \times 10^{-4}$ and $K_{a2} = 4.0 \times 10^{-9}$. Calculate the pH of the following solutions made using H_2A and/or its salts at 25°C.
 - a) [3 marks] 10.0 mL of 0.18 M H₂A mixed with 15.0 mL of 0.30 M NaHA.

$$[H_{2}A] = 10 \times 0.18 = 0.072 M \qquad H_{2}A = H_{4}^{-} + H_{5}^{+}$$

$$[N_{4}A] = 15 \times 0.3 = 0.18 M \quad c - x \quad + x \quad + x$$

$$[N_{4}A] = 15 \times 0.3 = 0.18 M \quad c - x \quad + x \quad + x$$

$$[0.072 - x \quad 0.18 + x) \times x$$

$$[0.18 + x)(x) = 2.5 \times 10^{-4}$$

$$[0.18 + x)(x) = 2.5 \times 10^{-4}$$

$$[0.072 - x) = 1 \times 10^{-4}; \quad PH = 4.0$$

b) [2 marks] 15.0 mL of 0.30 M NaHA

c) [4 marks] 10.0 mL of 0.21 M H_2A mixed with 15.0 mL of 0.18 M NaOH

$$[H_3A] = \frac{10}{25} \times 0.21 = 0.084 \text{ M}$$

$$[NaOH] = 15 \times 0.18 = 0.108 \text{ M}$$

$$NaOH \rightarrow Na^{+} + OH$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.108$$

$$0.$$

$$HA^{-} = H^{+} + A^{2^{-}}$$
i 0.06 0 0.024
$$c \rightarrow \times + \times + \times$$

$$\ell 0.06 \rightarrow \times \times 0.024 + \times$$

$$\times (0.024 + \times) = 4.0 \times 10^{-9}$$

$$(0.06 \rightarrow \times)$$

$$\times = (H + 3 = 1 \times 10^{-8})$$

$$PH = 8.0$$

d) [1 mark] What would be the pK_a for an indicator that you would use for the titration of H_2A ? How do you know? (No marks for guessing. (3))

Pick an indicator whose colour changes at the 1st equil. point, for which the PH=b. ... PKa For indicator should be 6.

- e) [4 marks] Sketch the titration curve you would expect to see for H₂A being titrated by NaOH. On your graph, indicate:
 - i) The equivalence point or points
 - ii) The buffer region or regions
 - iii) The region or regions on the graph where the pH is controlled by OH-

iv) The point or points on the graph where the pH is controlled by one amphiprotic species.

pol controlled by
excess On 1 st EP, pH controlled by 1 amphi protic species. Vol. added NaOH