Useful Constants

Avogadro's Number:
Standard Pressure:

$$
\begin{aligned}
& 6.02214076 \mathrm{x}^{23} \mathrm{~mol}^{-1} \\
& 1 \mathrm{~atm}=760 \mathrm{torr}=101325 \mathrm{~Pa}=760 \mathrm{mmHg} \text { (approx.) } \\
& 1 \mathrm{bar}=100,000 \mathrm{~Pa}(\text { exactly }) \\
& \mathrm{R}=0.082057366 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K}=8.314462618 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \\
& =62.36359822 \mathrm{~L} \cdot \text { torr } / \mathrm{mol} \cdot \mathrm{~K}=0.08314462618 \mathrm{~L} \cdot \mathrm{bar} / \mathrm{mol} \cdot \mathrm{~K}
\end{aligned}
$$

Gas Constant:

Acceleration due to gravity:
$9.80665 \mathrm{~m} / \mathrm{s}^{2}$
Faraday Constant:
1 mole electrons $=96485.33212$ coulombs
Water Hydrolysis Constant:
$\mathrm{K}_{\mathrm{w}}=1.00 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$

Useful formulae

$$
\begin{gathered}
\Delta \mathrm{E}=\mathrm{q}+\mathrm{w} ; \mathrm{w}=-\mathrm{P} \Delta \mathrm{~V} \\
\Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{P} \Delta \mathrm{~V}=\Delta \mathrm{E}+\Delta \mathrm{nRT}
\end{gathered}
$$

$\Delta G^{o}=\Delta H^{o}-T \Delta S^{o}=-R T \ln K=-n F \epsilon^{o}$ (where K is the equilibrium constant)

$$
\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}} ; \ln \left(\frac{K_{2}}{K_{1}}\right)=\left(\frac{\Delta H^{o}}{R}\right) x\left(\frac{T_{2}-T_{1}}{T_{2} T_{1}}\right) ; \ln \left(\frac{P_{2}}{P_{1}}\right)=\left(\frac{\Delta H_{v a p}^{o}}{R}\right) x\left(\frac{T_{2}-T_{1}}{T_{2} T_{1}}\right)
$$

$$
\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q}(\text { where } \mathrm{Q} \text { is the reaction quotient) }
$$

Raoult's Law: $P_{\text {tot }}=X_{A} P_{A}^{*}+X_{B} P_{B}^{*}$; Trouton's rule: $\Delta S_{\text {vap }}^{o}=\frac{\Delta \mathrm{H}_{\text {vap }}^{\mathrm{o}}}{T_{n b p}} \approx 88 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$

Nernst Equation:

$$
\begin{aligned}
& \epsilon_{\text {cell }}=\epsilon_{\text {cell }}^{o}-\frac{R T}{n F} \ln Q \\
& \epsilon_{\text {cell }}=\epsilon_{\text {cell }}^{o}-\frac{0.059159}{n} \log Q \text { at } 25^{\circ} \mathrm{C}
\end{aligned}
$$

Zero Order Reaction:

$$
[\mathrm{A}]_{\mathrm{o}}-[\mathrm{A}]_{\mathrm{t}}=\mathrm{kt}
$$

$1^{\text {st }}$ Order Reaction:

$$
\ln \left(\frac{[A]_{o}}{[A]_{t}}\right)=k t
$$

$2^{\text {nd }}$ Order Reaction:
$\frac{1}{[A]_{t}}=\frac{1}{[A]_{o}}+k t$
Arrhenius Equation: $k=A e^{\frac{-E_{a}}{R T}}$ (A is the pre-exponential factor)

$$
\ln \left(\frac{k_{2}}{k_{1}}\right)=\left(\frac{E_{a}}{R}\right) x\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right)
$$

Freezing Point Depression/Boiling Point elevation:

$$
\Delta \mathrm{T}=\mathrm{i} \mathrm{~K}_{\mathrm{f}} m^{l} / \Delta \mathrm{T}=\mathrm{i} \mathrm{~K}_{\mathrm{b}} m
$$

[^0]
[^0]: 1 " i " is the van't Hoff factor

