ACID-BASE EQUILIBRIA (no calculator)

(All questions may be done without a calculator. Answers given were generated without the use of a calculator.)

1) Give the formula of the conjugate base:
a) HPO_{4}^{-2}
b) NH_{4}^{+}
c) HS^{-1}
2) Give the formula of the conjugate acid:
a) O^{-2}
b) $\mathrm{SO}_{4}{ }^{-2}$
c) $\mathrm{H}_{2} \mathrm{O}$
3) Which are Lewis acids and which are Lewis bases?
a) Na^{+}
b) NH_{3}
c) CN^{-1}
d) BF_{3}
4) Classify the following as Arrhenius, Bronsted-Lowry, or Lewis acid-base reactions. A reaction may fit all, two, one, or none of the categories:
a) $\mathrm{Ag}^{+}+2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$
b) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{HSO}_{4}{ }^{-1}+\mathrm{NH}_{4}{ }^{+}$
c) $2 \mathrm{HCl} \rightleftharpoons \mathrm{H}_{2}+\mathrm{Cl}_{2}$
d) $\mathrm{AlCl}_{3}+\mathrm{Cl}^{-1} \rightleftharpoons \mathrm{AlCl}_{4}^{-1}$
5) A 0.040 M solution of a weak acid (HA) has a pH of 4.70. What re the K_{a} and pK_{a} ?
6) A 0.25 mol sample of a weak acid HA is dissolved in water to make 500 mL of the solution. The pH of the solution is measured to be 3.30, what is the K_{a} of the weak acid?
7) For a diprotic weak acid $\mathrm{H}_{2} \mathrm{~A}, \mathrm{~K}_{\mathrm{a} 1}=1 \times 10^{-4}$ and $\mathrm{K}_{\mathrm{a} 2}=1 \times 10^{-8}$. Calculate $\left[\mathrm{H}_{2} \mathrm{~A}\right],\left[\mathrm{HA}^{-1}\right],\left[\mathrm{A}^{-2}\right],\left[\mathrm{H}^{+}\right]$, pH and pOH in a 1.00 M solution of $\mathrm{H}_{2} \mathrm{~A}$.
8) Phenol $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right)$ is a weak acid with a $\mathrm{K}_{\mathrm{a}}=1.0 \times 10^{-10}$. What is the pH of 0.100 M sodium phenolate $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}\right)$, the sodium salt of phenol?
9) What is the pH of a 0.40 M anilinium chloride $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{Cl}\right)$ solution? K_{b} of aniline $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$ is 4×10^{-10}.
10) Calculate the pH of a 6.0% (mass/volume) acetic acid (molar mass $=60.0 \mathrm{~g} / \mathrm{mol}$) solution in water if the pK_{a} of aceic acid is 4.74 .
11) Explain with equations and calculations, when necessary, whether an aqueous solution of each of these salts is acidic, basic, or neutral:
a) KBr
b) $\mathrm{NH}_{4} \mathrm{I}$
c) KCN
12) Explain with equations and calculations, when necessary, whether an aqueous solution of each of these salts is acidic, basic, or neutral:
a) SrBr_{2}
b) $\mathrm{Ba}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2} \mathrm{Br}$
13) Calculate the pH of a buffer solution that has 0.50 M HA and 1.0 M KA . $\left(\mathrm{K}_{\mathrm{a}}\right.$ of HA is $\left.2 \times 10^{-5}\right)$.
14) Calculate the pH of a solution that consists of $0.50 \mathrm{M} \mathrm{NH}_{3}$ and $0.50 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$. The pK_{b} of ammonia is 4.74.
15) What is the ratio of $\left[H A / A^{-1}\right]$ of a buffer solution that has a $\mathrm{pH}=2.70$ if the pK_{a} of HA is 3.00 ?
16) A solution containing 0.10 M HA (a weak acid) and 0.20 M NaA (the salt of the weak acid) has a pH= 3.30. What is the pH after 25 mmol of HCl is added to 500 mL of this solution?
17) A solution containing 0.40 M (a weak base) and $0.20 \mathrm{M} \mathrm{BH}^{+}$(the salt of the weak base) has a $\mathrm{pH}=$ 10.30. What is the pH after 25 mmol of HCl is added to 250 mL of this solution?
18) The indicator cresol red has $K_{a}=5.0 \times 10^{-9}$. Over what approximate pH range does it change colour?
19) A 25.0 mL sample of a weak base B is titrated with 50.0 mL of 0.20 M HCl . The p_{b} of the weak base B is 3.60 .
a) Calculate the pH of the solution at the start of the titration.
b) Calculate the pH of the solution when 10.0 mL of the acid solution have been added.
c) Calculate the pH at the equivalence point of this titration.
d) Calculate the pH when 25.0 mL beyond the equivalence point have been added.
e) If you were to select an indicator for the above titration, approximately what should be its pK_{a} ? EXPLAIN YOUR ANSWER.
20) A 10.0 mL sample of 0.300 M weak acid (HA) is titrated with 0.100 M NaOH solution. The K_{a} for $\mathrm{HA}=$ 2.0×10^{-4}.
a) Calculate the pH of the solution when no base has been added.
b) Calculate how many mL of NaOH solution have been added when the $\mathrm{pH}=3.00$.
c) Calculate the pH when a total of 30.00 mL of NaOH solution have been added.
d) Calculate the pH when a total of 40.00 mL of NaOH solution have been added.
e) The indicators bromcresol green and thymol blue go through a colour change from yellow to blue, however their pK_{a} 's are different: pK_{a} (bromcresol green) $=4.5$ and pK_{a} (thymol blue) $=8.5$
f) Which indicator should be used in the above titration so that the end point corresponds with the equivalence point? SHOW YOUR WORK TO SUPPORT YOUR CHOICE.
1. (a) PO_{4}^{-3} (b) NH_{3} (c) S^{-2}
2. (a) OH^{-1} (b) HSO_{4}^{-1} (c) $\mathrm{H}_{3} \mathrm{O}^{+}$
3. Lewis acids: $\mathrm{Na}^{+}, \mathrm{BF}_{3}$ Lewis Bases: $\mathrm{NH}_{3}, \mathrm{CN}^{-1}$
4. (a) Lewis \quad (b) Bronsted-Lowry and Lewis \quad (c) None \quad (d) Lewis
5. $\mathrm{K}_{\mathrm{a}}=1.0 \times 10^{-8}$ and $\mathrm{pK} \mathrm{a}_{\mathrm{a}}=8.00$
6. $\mathrm{K}_{\mathrm{a}}=5 \times 10^{-7}$
7. $\left[\mathrm{H}^{+}\right]=\left[\mathrm{HA}^{-1}\right]=0.01 \mathrm{M} ;\left[\mathrm{H}_{2} \mathrm{~A}\right]=0.99 \mathrm{M} ; \mathrm{pH}=2.0$ and $\mathrm{pOH}=12.0 ;\left[\mathrm{A}^{-2}\right]=\mathrm{K}_{\mathrm{a} 2}=1 \times 10^{-8} \mathrm{M}$
8. $\mathrm{pH}=11.50$
9. $\mathrm{pH}=2.50$
10. $\mathrm{pH}=2.37$
11. (a) neutral (b) acidic (c) basic
12. (a) neutral (b) basic (c) acidic
13. $\mathrm{pH}=5.00$
14. $\mathrm{pH}=9.26$
15. $\left[H A / A^{-1}\right]=2$
16. $\mathrm{pH}=3.00$
17. $\mathrm{pH}=10.00$
18. pH range for this indicator is about 7.3 to 9.3.
19. (a) $\mathrm{pH}=12.00$
(b) $\mathrm{pH}=11.00$
(c) $\mathrm{pH}=5.64$
(d) $\mathrm{pH}=1.30$
(e) pKa of the indicator should be around 5.5 because that is the pH at the equivalence point.
20. (a) $\mathrm{pH}=2.11$
(b) 5.00 mL
(c) $\mathrm{pH}=9.41$
(d) $\mathrm{pH}=12.30$
(e) Thymol blue
