ACID-BASE EQUILIBRIA (no calculator)

(All questions may be done without a calculator. Answers given were generated without the use of a calculator.)

- 1) Give the formula of the conjugate base:
 - a) HPO₄⁻²
 - b) NH₄⁺
 - c) HS⁻¹
- 2) Give the formula of the conjugate acid:
 - a) O⁻²
 - b) SO₄-2
 - c) H₂O
- 3) Which are Lewis acids and which are Lewis bases?
 - a) Na⁺
 - b) NH₃
 - c) CN⁻¹
 - d) BF₃
- 4) Classify the following as Arrhenius, Bronsted-Lowry, or Lewis acid-base reactions. A reaction may fit all, two, one, or none of the categories:
 - a) $Ag^+ + 2NH_3 \longrightarrow Ag(NH_3)_2^+$
 - b) $H_2SO_4 + NH_3 = HSO_4^{-1} + NH_4^+$
 - c) 2HCI = H₂ + Cl₂
 - d) $AICI_3 + CI^{-1} = AICI_4^{-1}$
- 5) A 0.040 M solution of a weak acid (HA) has a pH of 4.70. What re the K_a and pK_a ?
- 6) A 0.25 mol sample of a weak acid HA is dissolved in water to make 500 mL of the solution. The pH of the solution is measured to be 3.30, what is the K_a of the weak acid?
- 7) For a diprotic weak acid H₂A, $K_{a1} = 1 \times 10^{-4}$ and $K_{a2} = 1 \times 10^{-8}$. Calculate [H₂A], [HA⁻¹], [A⁻²], [H⁺], pH and pOH in a 1.00 M solution of H₂A.
- 8) Phenol (C₆H₅OH) is a weak acid with a K_a = 1.0×10^{-10} . What is the pH of 0.100 M sodium phenolate (C₆H₅ONa), the sodium salt of phenol?
- 9) What is the pH of a 0.40 M anilinium chloride ($C_6H_5NH_3Cl$) solution? K_b of aniline ($C_6H_5NH_2$) is 4×10^{-10} .
- 10) Calculate the pH of a 6.0% (mass/volume) acetic acid (molar mass = 60.0 g/mol) solution in water if the pK_a of aceic acid is 4.74.

- 11) Explain with equations and calculations, when necessary, whether an aqueous solution of each of these salts is acidic, basic, or neutral:
 - a) KBr
 - b) NH₄I
 - c) KCN
- 12) Explain with equations and calculations, when necessary, whether an aqueous solution of each of these salts is acidic, basic, or neutral:
 - a) SrBr₂
 - b) Ba(CH₃COO)₂
 - c) (CH₃)₂NH₂Br
- 13) Calculate the pH of a buffer solution that has 0.50 M HA and 1.0 M KA. (K_a of HA is 2 x 10⁻⁵).
- 14) Calculate the pH of a solution that consists of 0.50 M NH₃ and 0.50 M NH₄Cl. The pK_b of ammonia is 4.74.
- 15) What is the ratio of $[HA/A^{-1}]$ of a buffer solution that has a pH = 2.70 if the pK_a of HA is 3.00?
- 16) A solution containing 0.10 M HA (a weak acid) and 0.20 M NaA (the salt of the weak acid) has a pH = 3.30. What is the pH after 25 mmol of HCl is added to 500 mL of this solution?
- 17) A solution containing 0.40 M B (a weak base) and 0.20 M BH⁺ (the salt of the weak base) has a pH = 10.30. What is the pH after 25 mmol of HCl is added to 250 mL of this solution?
- 18) The indicator cresol red has $K_a = 5.0 \times 10^{-9}$. Over what approximate pH range does it change colour?
- 19) A 25.0 mL sample of a weak base B is titrated with 50.0 mL of 0.20 M HCl. The $pK_{\rm b}$ of the weak base B is 3.60.
 - a) Calculate the pH of the solution at the start of the titration.
 - b) Calculate the pH of the solution when 10.0 mL of the acid solution have been added.
 - c) Calculate the pH at the equivalence point of this titration.
 - d) Calculate the pH when 25.0 mL beyond the equivalence point have been added.
 - e) If you were to select an indicator for the above titration, approximately what should be its pK_a? EXPLAIN YOUR ANSWER.
- 20) A 10.0 mL sample of 0.300 M weak acid (HA) is titrated with 0.100 M NaOH solution. The K_a for HA = 2.0×10^{-4} .
 - a) Calculate the pH of the solution when no base has been added.
 - b) Calculate how many mL of NaOH solution have been added when the pH = 3.00.
 - c) Calculate the pH when a total of 30.00 mL of NaOH solution have been added.
 - d) Calculate the pH when a total of 40.00 mL of NaOH solution have been added.
 - e) The indicators bromcresol green and thymol blue go through a colour change from yellow to blue, however their pK_a's are different: pK_a(bromcresol green) = 4.5 and pK_a(thymol blue) = 8.5
 - f) Which indicator should be used in the above titration so that the end point corresponds with the equivalence point? SHOW YOUR WORK TO SUPPORT YOUR CHOICE.

ANSWERS

- 1. (a) PO₄⁻³ (b) NH₃ (c) S⁻²
- 2. (a) OH⁻¹ (b) HSO₄⁻¹ (c) H₃O⁺
- 3. Lewis acids: Na⁺, BF₃ Lewis Bases: NH₃, CN⁻¹
- 4. (a) Lewis (b) Bronsted-Lowry and Lewis (c) None (d) Lewis
- 5. $K_a = 1.0 \times 10^{-8}$ and $pK_a = 8.00$
- 6. $K_a = 5 \times 10^{-7}$
- 7. $[H^+] = [HA^{-1}] = 0.01 \text{ M}; [H_2A] = 0.99 \text{ M}; \text{ pH} = 2.0 \text{ and } \text{pOH} = 12.0; [A^{-2}] = K_{a2} = 1 \times 10^{-8} \text{ M}$
- 8. pH = 11.50
- 9. pH = 2.50
- 10. pH = 2.37
- 11. (a) neutral (b) acidic (c) basic
- 12. (a) neutral (b) basic (c) acidic
- 13. pH = 5.00
- 14. pH = 9.26
- 15. [HA/A⁻¹] = 2
- 16. pH =3.00
- 17. pH = 10.00
- 18. pH range for this indicator is about 7.3 to 9.3.

19. (a) pH = 12.00 (b) pH = 11.00 (c) pH = 5.64 (d) pH = 1.30

(e) pKa of the indicator should be around 5.5 because that is the pH at the equivalence point.

20. (a) pH = 2.11 (b) 5.00 mL (c) pH = 9.41 (d) pH = 12.30 (e) Thymol blue