Equilbirum (no calculator)

(All questions may be completed without the use of a calculator. All answers given were generated without a calculator.)

1) Calculate K_{c} for each of the following equilibria:

$$
\begin{aligned}
& \mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{p}}=5 \times 10^{-2} \text { at } 1200 \mathrm{~K}[5] \\
& \mathrm{S}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{~s}) \rightleftharpoons \mathrm{CS}_{2}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{p}}=28.5 \text { at } 500 \mathrm{~K}
\end{aligned}
$$

2) In an analysis of interhalogen reactivity, 0.500 mol of ICl was placed in a 5.00 L flask, where it decomposed at a high temperature:
$2 \mathrm{ICl}(\mathrm{g}) \rightleftharpoons \mathrm{I}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
If $\mathrm{K}_{\mathrm{c}}=1$ at the temperature used, calculate the equilibrium concentrations of all species.
(Answer: $\left[\mathrm{I}_{2}\right]=\left[\mathrm{Cl}_{2}\right]=[\mathbf{I C l}]=\mathbf{0 . 0 3 3} \mathbf{~ M}$)
3) At $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{p}}=4.0$ for the equilibrium:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{g})$
The three gases, each at a partial pressure of 1.00 bar , are introduced into a reaction vessel.
a) Determine the direction of the reaction. [The reaction moves to the right to produce $\mathrm{HCl}]$
b) Determine the equilibrium partial pressure of each gas.[$\mathbf{H}_{\mathbf{2}}=\mathbf{C l}_{\mathbf{2}}=\mathbf{0 . 7 5}$ bar and $\mathbf{H C l}=1.50$ bar]
4) The formation of methanol is important in the processing of new fuels. At 298 K , $K_{p}=2 \times 10^{4}$ for the reaction:
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
If $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=128 \mathrm{~kJ}$, calculate K_{p} at $125^{\circ} \mathrm{C}$. (Answer: $\mathbf{K}_{\mathbf{p}} \cong \mathbf{0 . 1}$)
5) One of the most important industrial sources of ethanol is the reaction of steam with ethane derived from crude oil:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-47.8 \mathrm{~kJ}, \text { and } \mathrm{K}_{\mathrm{c}}=9 \times 10^{3} \text { at } 600 \mathrm{~K}
$$

a) At equilibrium, $\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 5 \mathrm{OH}}=200$ bar and $\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=400$ bar. Calculate $\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}$ at equilibrium. [$3 \times 10^{-3} \mathrm{~atm}$]
b) Is the highest yield of ethanol obtained at high or low pressures, and at high or low temperatures? [High pressure and low temperature]
c) Calculate K_{c} at $450 \mathrm{~K} .\left[\mathrm{K}_{\mathbf{c}} \cong \mathbf{1 0}^{5}\right]$
d) In manufacturing, the yield of ammonia is increased by condensing it to a liquid and removing it from the vessel. Would condensing the ethanol and removing it from the reaction vessel increase the yield? Explain. [No.]
6) Aluminum is one of the most versatile metals. It is produced by the Hall-Heroult process, in which cryolite, $\mathrm{Na}_{3} \mathrm{AlF}_{6}$, is used as a solvent for the aluminum ore. Cryolite undergoes very slight decomposition with heat to produce a tiny amount of F_{2}, which escapes into the atmosphere above the solvent. K_{c} is 2×10^{-104} at 1300 K for the reaction:
$\mathrm{Na}_{3} \mathrm{AlF}_{6}(\mathrm{l}) \rightleftharpoons 3 \mathrm{Na}(\mathrm{l})+\mathrm{Al}(\mathrm{l})+3 \mathrm{~F}_{2}(\mathrm{~g})$
What is the concentration of $\mathrm{F}_{2}(\mathrm{~g})$ over molten cryolite at this temperature? Give your answer in moles $/ \mathrm{L}$ and in molecules $/ \mathrm{km}^{3}$. (Answer: $\left[\mathrm{F}_{2}\right] \cong \mathbf{3} \times \mathbf{1 0}^{-\mathbf{- 3 5}} \mathrm{M}$ or 16 molecules/km ${ }^{3}$)
7) How will the color of the equilibrium mixture:
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}(\mathrm{aq})+2 \mathrm{OH}^{-1}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{CrO}_{4}^{-2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
be affected by the addition of:
a) sodium hydroxide. (Answer: equilibrium will shift to the right (more yellow color))
b) hydrochloric acid. (Answer: equilibrium will shift to the left (more orange color))
8) A mixture of 3.00 volumes of H_{2} and 1.00 volumes of N_{2} reacts at $344^{\circ} \mathrm{C}$ to form ammonia. The equilibrium mixture at 100 bar contains $60 \% \mathrm{NH}_{3}$ by volume. Calculate K_{p} for the reaction, assuming the gases behave ideally. (Answer: $K_{p}=\mathbf{1 . 3} \times \mathbf{1 0}^{-\mathbf{2}}$)
9) At $125^{\circ} \mathrm{C} \mathrm{K}$ is 2.0 for the equilibrium
$\mathrm{AB}(\mathrm{g}) \rightleftharpoons \mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g})$
for which $\Delta \mathrm{H}^{\circ}=+80 \mathrm{~kJ}$. Calculate the approximate value of K_{p} at $225^{\circ} \mathrm{C}$.
(Answer: Kp $\cong \mathbf{2} \times 10^{2}$)
10) For the equilibrium
$2 \mathrm{X}(\mathrm{g})+\mathrm{Y}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{XY}(\mathrm{g})$
at $225^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{p}}=5 \times 10^{-2}$ and $\Delta \mathrm{H}^{\circ}$ for the reaction is -27 kJ . Estimate the value of K_{p} at $525^{\circ} \mathrm{C}$. (Answer: $K_{p} \cong 5 \times 10^{-3}$)
11) For the equilibrium
$\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
K_{c} is 1×10^{-4} at $525^{\circ} \mathrm{C}$ and 2×10^{-10} at $125^{\circ} \mathrm{C}$. Calculate the approximate $\Delta \mathrm{H}^{\circ}$ for this reaction. (Answer: $\mathbf{\Delta H} \mathbf{H}^{\circ} \cong+\mathbf{9 6} \mathbf{~ k J}$)
12) The equilibrium
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
was studied a series of temperatures. A plot of $\ln \left(\mathrm{K}_{\mathrm{p}}\right)$ vs $1 / \mathrm{T}$ gave a line with a slope $=-1.1 \times 10^{4}$.
a) Is the reaction exothermic or endothermic? EXPLAIN.
b) What are the units for the slope?
c) Calculate $\Delta \mathrm{H}$ for this reaction in $\mathrm{kJ} / \mathrm{mol}$. (Answer: $\boldsymbol{+ 9 1} \mathbf{~ k J} / \mathbf{m o l}$)

