Solubility (no calculator)

(All questions may be completed without the use of a calculator. All answers given were generated without a calculator.)

1) The molar solubility of a compound with the formula $\mathrm{M}_{2} \mathrm{X}$ is 0.020 . Calculate its $\mathrm{K}_{\text {sp }}$. (Answer: 3.2×10^{-5})
2) The solubility of cobalt(II) carbonate (molar mass $=119 \mathrm{~g}$) is $0.119 \mathrm{mg} / 100 \mathrm{~mL}$ of water. Calculate its $\mathrm{K}_{\text {sp }}$.
(Answer: $1 \times \mathbf{1 0}^{-10}$)
3) Calculate the molar solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}\left(\mathrm{~K}_{\text {sp }}=2.6 \times 10^{-12}\right) \mathrm{in}$:
a) $2.6 \times 10^{-2} \mathrm{M} \mathrm{Na}_{2} \mathrm{CrO}_{4}\left[\mathbf{1} \times \mathbf{1 0}^{-5} \mathbf{M}\right]$
b) $0.16 \mathrm{M} \mathrm{AgNO}_{3}\left[\mathbf{1} \mathbf{x ~ 1 0}{ }^{-\mathbf{1 0}} \mathbf{M}\right]$
4) Which compound in each pair is more soluble in water? (Look up the $\mathrm{K}_{\text {sp }}$ values in your textbook or online.)
a) Manganese(II) hydroxide or calcium iodate
b) Strontium carbonate or cadmium sulphide
c) Silver cyanide or copper(I) iodide
(Answers: (a) $\mathbf{C a}\left(\mathrm{IO}_{3}\right)_{2}$ is more soluble, (b) SrCO_{3} is more soluble, (c) CuI is more soluble)
5) Does any solid $\mathrm{Ag}_{2} \mathrm{CrO}_{4}\left(\mathrm{~K}_{\mathrm{sp}}=2.6 \times 10^{-12}\right)$ form when 1.0 mL of $0.10 \mathrm{M} \mathrm{AgNO}_{3}$ is mixed with 999.0 mL of $1 \times 10^{-3} \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$?
(Answer: Yes, a precipitate would form because $\mathbf{Q}_{\text {sp }}>K_{\text {sp. }}$.)
6) When blood is donated, sodium oxalate is used to precipitate out the Ca^{2+} present $\left(\mathrm{Ca}^{+2}\right.$ triggers clotting). A 100 mL sample of blood contains $1.0 \times 10^{-4} \mathrm{~g} \mathrm{Ca} / \mathrm{mL}$ blood. A technologist treats this sample with 100 mL of $1.00 \mathrm{M} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$. The $\mathrm{K}_{\text {sp }}$ of $\mathrm{CaC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ is 2.5×10^{-9}. Calculate the $\left[\mathrm{Ca}^{2+}\right]$ and the $\% \mathrm{Ca}^{2+}$ left in solution after this treatment.
(Answers: $\left[\mathrm{Ca}^{2+}\right]=5 \times 10^{-9} \mathrm{M}$ and $4 \times 10^{-4} \% \mathrm{Ca}^{2+}$ left in solution.)
7) 50 mL of $3.2 \times 10^{-3} \mathrm{M} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ is mixed with 50 mL of $1.44 \mathrm{M} \mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}$. The K_{sp} of $\mathrm{Fe}(\mathrm{OH})_{3}$ is 1.6×10^{-39}, and the $\mathrm{K}_{\text {sp }}$ of $\mathrm{Cd}(\mathrm{OH})_{2}$ is 7.2×10^{-15}
a) If aqueous NaOH is added to the above solution, which ion precipitates first?
(Answer: Fe^{+3})
b) Describe how the metal ions can be separated using NaOH .
(Answer: As NaOH is added $\mathrm{Fe}(\mathrm{OH}) 3$ will continue to preciptate until the $\left[\mathrm{OH}^{-1}\right]$ is sufficiently large to cause the $\mathrm{Cd}(\mathbf{O H})_{2}$ to start to precipitate out.)
c) Calculate the $\left[\mathrm{OH}^{-1}\right]$ at which the $\mathrm{Cd}(\mathrm{OH})_{2}$ just begins to precipitate out.
(Answer: $\left[\mathrm{OH}^{-1}\right]=\mathbf{1 \times 1 0} \mathbf{~ M}$)
d) Calculate the $\left[\mathrm{Fe}^{+3}\right]$ left in solution when the $\mathrm{Cd}(\mathrm{OH})_{2}$ just begins to precipitate out of solution.
(Answer: $1.6 \times 10^{-19} \mathrm{M}$)
8) Gout is caused by the build up of uric acid in body fluids. Crystals of sodium urate $\left(\mathrm{NaC}_{5} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{O}_{3}\right)$ are deposited in the joints, particularly in the big toe. The molar solubility of sodium urate is 5×10^{-3}. If the $\left[\mathrm{Na}^{+}\right]$in bodily fluids is 0.15 M , at what urate concentration will a deposit of sodium urate occur in the big toe joint? (Answer: $1.7 \times 1 \mathbf{1 0}^{-\mathbf{4}} \mathbf{M}$)
9) Scenes A to C represent aqueous solutions of the slightly soluble salt MZ (only the ions of the salt are shown):

$$
\mathrm{MZ}(\mathrm{~s}) \rightleftharpoons \mathrm{M}^{+2}(\mathrm{aq})+\mathrm{Z}^{-2}(\mathrm{aq})
$$

a) Which scene represents the solution just after solid MZ is stirred thoroughly in distilled water?
b) If each sphere represents $2.5 \times 10^{-6} \mathrm{M}$ of ions, what is the K_{sp} of MZ ?
c) Which scene represents the solution after $\mathrm{Na}_{2} \mathrm{Z}(\mathrm{aq})$ is added?
d) If Z^{-2} is CO_{3}^{-2}, which scene represents the solution after the pH has been lowered?
(Answers: (a) B, (b) $K_{s p}=1 \times 10^{-10}$, (c) C, (d) A)
10) A solution contains $5.3 \times 10^{-4} \mathrm{M} \mathrm{Cu}^{+}$and $1.4 \times 10^{-3} \mathrm{M} \mathrm{Pb}^{2+}$.
a) If a source of I^{-1} is added to this solution, will $\mathrm{PbI}_{2}\left(\mathrm{~K}_{\text {sp }}=1.4 \times 10^{-8}\right)$ or CuI $\left(\mathrm{K}_{\text {sp }}=5.3 \times 10^{-12}\right)$ precipitate first? Specify the concentration of I- necessary to begin precipitation of each compound.
(Answer: CuI will precipitate first since a much lower concentration of I^{-1} would be required. The $\left[\left[^{-1}\right]\right.$ necessary to precipitate the Cu^{+}is $1.0 \times 10^{-8} \mathrm{M}$ vs. $1.0 \times 10^{-3} \mathrm{M}$ to precipitate the $\mathbf{P b}^{\mathbf{2 +}}$.)
b) Calculate the $\%$ of the first ion to precipitate left in solution when the second ion just starts to precipitate.
(Answer: When the PbI_{2} just begins to precipitate $\mathbf{0 . 0 0 1 \%}$ of the $\mathbf{C u}^{+}$will remain in solution.)
11) You are to do a titration of 10.00 mL of 0.1000 M NaCl with $0.1000 \mathrm{M} \mathrm{AgNO}_{3}$. The K_{sp} of AgCl is 1.8×10^{-10} and we will define the pCl scale as:
$\mathrm{pCl}=-\log \left[\mathrm{Cl}^{-}\right]$
(If you've done acids and bases before, this is a similar sort of idea as was used to define the pH scale.)
a) Calculate the pCl at the start of the titration. (Answer: $\mathbf{p C l}=\mathbf{1 . 0}$)
b) Calculate the approximate pCl after 9.00 mL of AgNO_{3} solution has been added.
(Answer: $\mathbf{p C l} \cong 2.3$)
c) Calculate the pCl after 10.00 mL of AgNO_{3} solution has been added.
(Answer: $\mathrm{pCl}=4.87$)
d) Calculate the approximate pCl after 1100 mL of AgNO_{3} solution has been added.
(Answer: $\mathrm{pCl} \cong 7.4$)

