Solubility (no calculator)

(All questions may be completed without the use of a calculator. All answers given were generated without a calculator.)

- 1) The molar solubility of a compound with the formula M_2X is 0.020. Calculate its K_{sp} . (Answer: 3.2 x 10⁻⁵)
- 2) The solubility of cobalt(II) carbonate (molar mass = 119 g) is 0.119 mg/100 mL of water. Calculate its K_{sp}. (Answer: 1 x 10⁻¹⁰)
- 3) Calculate the molar solubility of Ag_2CrO_4 ($K_{sp} = 2.6 \times 10^{-12}$) in:
 - a) 2.6 x 10⁻² M Na₂CrO₄ [1 x 10⁻⁵ M]
 - b) 0.16 M AgNO₃ [1 x 10⁻¹⁰ M]
- 4) Which compound in each pair is more soluble in water? (Look up the K_{sp} values in your textbook or online.)
 - a) Manganese(II) hydroxide or calcium iodate
 - b) Strontium carbonate or cadmium sulphide
 - c) Silver cyanide or copper(I) iodide
 (Answers: (a) Ca(IO₃)₂ is more soluble, (b) SrCO₃ is more soluble, (c) CuI is more soluble)
- 5) Does any solid Ag₂CrO₄ (K_{sp} = 2.6 x 10⁻¹²) form when 1.0 mL of 0.10 M AgNO₃ is mixed with 999.0 mL of 1 x 10⁻³ M K₂CrO₄? (Answer: Yes, a precipitate would form because Q_{sp} > K_{sp}.)
- 6) When blood is donated, sodium oxalate is used to precipitate out the Ca²⁺ present (Ca⁺² triggers clotting). A 100 mL sample of blood contains 1.0 x 10⁻⁴ g Ca/mL blood. A technologist treats this sample with 100 mL of 1.00 M Na₂C₂O₄. The K_{sp} of CaC₂O₄·H₂O is 2.5 x 10⁻⁹. Calculate the [Ca²⁺] and the % Ca²⁺ left in solution after this treatment. (Answers: [Ca²⁺] = 5 x 10⁻⁹ M and 4 x 10⁻⁴ % Ca²⁺ left in solution.)

- 7) 50 mL of 3.2×10^{-3} M Fe(NO₃)₃ is mixed with 50 mL of 1.44 M Cd(NO₃)₂. The K_{sp} of Fe(OH)₃ is 1.6×10^{-39} , and the K_{sp} of Cd(OH)₂ is 7.2×10^{-15}
 - a) If aqueous NaOH is added to the above solution, which ion precipitates first? (Answer: Fe⁺³)
 - b) Describe how the metal ions can be separated using NaOH.
 (Answer: As NaOH is added Fe(OH)₃ will continue to preciptate until the [OH⁻¹] is sufficiently large to cause the Cd(OH)₂ to start to precipitate out.)
 - c) Calculate the [OH⁻¹] at which the Cd(OH)₂ just begins to precipitate out. (Answer: [OH⁻¹] = 1 x 10⁻⁷ M)
 - d) Calculate the [Fe⁺³] left in solution when the Cd(OH)₂ just begins to precipitate out of solution.
 - (Answer: 1.6 x 10⁻¹⁹ M)
- 8) Gout is caused by the build up of uric acid in body fluids. Crystals of sodium urate $(NaC_5H_3N_4O_3)$ are deposited in the joints, particularly in the big toe. The molar solubility of sodium urate is 5 x 10⁻³. If the $[Na^+]$ in bodily fluids is 0.15 M, at what urate concentration will a deposit of sodium urate occur in the big toe joint? (Answer: 1.7 x 10⁻⁴ M)
- 9) Scenes A to C represent aqueous solutions of the slightly soluble salt MZ (only the ions of the salt are shown):

$$MZ(s) = M^{+2}(aq) + Z^{-2}(aq)$$

- a) Which scene represents the solution just after solid MZ is stirred thoroughly in distilled water?
- b) If each sphere represents 2.5×10^{-6} M of ions, what is the K_{sp} of MZ?
- c) Which scene represents the solution after $Na_2Z(aq)$ is added?
- d) If Z⁻² is CO₃⁻², which scene represents the solution after the pH has been lowered? (Answers: (a) B, (b) K_{sp} = 1 x 10⁻¹⁰, (c) C, (d) A)

10) A solution contains 5.3 x 10^{-4} M Cu⁺ and 1.4 x 10^{-3} M Pb²⁺.

- a) If a source of I⁻¹ is added to this solution, will PbI_2 (K_{sp} = 1.4 x 10⁻⁸) or CuI (K_{sp} = 5.3 x 10⁻¹²) precipitate first? Specify the concentration of I- necessary to begin precipitation of each compound. (Answer: CuI will precipitate first since a much lower concentration of I⁻¹ would be required. The [I⁻¹] necessary to precipitate the Cu⁺ is 1.0 x 10⁻⁸ M vs. 1.0 x 10⁻³ M to precipitate the Pb²⁺.)
- b) Calculate the % of the first ion to precipitate left in solution when the second ion just starts to precipitate.
 (Answer: When the PbI₂ just begins to precipitate 0.001% of the Cu⁺ will remain in solution.)
- 11) You are to do a titration of 10.00 mL of 0.1000 M NaCl with 0.1000 M AgNO₃. The K_{sp} of AgCl is 1.8 x 10⁻¹⁰ and we will define the pCl scale as:

 $pCl = -log[Cl^-]$

(If you've done acids and bases before, this is a similar sort of idea as was used to define the pH scale.)

- a) Calculate the pCl at the start of the titration. (Answer: pCl = 1.0)
- b) Calculate the approximate pCl after 9.00 mL of AgNO₃ solution has been added. (Answer: pCl ≅ 2.3)
- c) Calculate the pCl after 10.00 mL of AgNO₃ solution has been added. (Answer: pCl = 4.87)
- d) Calculate the approximate pCl after 11 00 mL of AgNO₃ solution has been added.
 (Answer: pCl ≈ 7.4)