## THERMOCHEMISTRY (no calculator)

(All questions may be completed without the use of a calculator. Answers given were generated without a calculator.)

1) For the reaction:

$$
2 \mathrm{~F}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{HF}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

a) Use enthalpies of formation to calculate the value of $\Delta \mathrm{H}^{\circ}$ for the reaction. Enthalpies of formation: $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=-242 \mathrm{~kJ} / \mathrm{mol}, \mathrm{HF}(\mathrm{g})=-271 \mathrm{~kJ} / \mathrm{mol}[-600 \mathrm{~kJ}]$
b) Use bond energies to calculate $\Delta \mathrm{H}^{\circ}$ for the reaction. F-F (158 kJ/mol); H-F (568 kJ/mol); O=O (494 kJ/mol); O-H (463 kJ/mol) [-598 kJ]
2) Given the thermochemical equation

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=+42.7 \mathrm{~kJ}
$$

a) Calculate $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}, 288}$ for $\mathrm{NaN}_{3}(\mathrm{~s})$. [-21.35 kJ/mol]
b) Calculate $\Delta \mathrm{E}^{\circ}{ }_{298}$ for the above reaction. [about +35 kJ ]
3) A 20.0 millimole sample of an organic compound was burned in excess oxygen in a bomb calorimeter. The calorimeter contained 1000 g of water and the calorimeter itself had a heat capacity of $3.816 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. The temperature of the calorimeter and its contents increased from $19.00^{\circ} \mathrm{C}$ to $27.00^{\circ} \mathrm{C}$. What quantity of heat would be liberated by the combustion of one mole of this organic compound under these conditions? [ $\Delta \mathrm{E}^{\circ}=\mathrm{q}_{\mathrm{v}}=\mathbf{- 3 . 2 0 \times 1 0 ^ { \mathbf { 3 } } \mathrm { kJ } ]}$
4) Given:

| $\mathrm{OSCl}_{2}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{aq})$ | $\Delta \mathrm{H}^{\circ}=+10 \mathrm{~kJ}$ |
| :--- | :--- |
| $2 \mathrm{PCl}_{3}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{OPCl}_{3}(\mathrm{l})$ | $\Delta \mathrm{H}^{\circ}=-650 \mathrm{~kJ}$ |
| $2 \mathrm{P}(\mathrm{s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{PCl}_{3}(\mathrm{l})$ | $\Delta \mathrm{H}^{\circ}=-614 \mathrm{~kJ}$ |
| $4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~g}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ | $\Delta \mathrm{H}^{\circ}=-203 \mathrm{~kJ}$ |

Calculate the value of $\Delta H^{\circ}$ for the reaction
$2 \mathrm{P}(\mathrm{s})+2 \mathrm{SO}_{2}(\mathrm{~g})+5 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SCl}_{2}(\mathrm{I})+2 \mathrm{PPCl}_{3}(\mathrm{I})$
[-1081 kJ]
5) The combustion of 10.0 millimoles of cyclohexane, $\mathrm{C}_{6} \mathrm{H}_{12}(\mathrm{I})$, in a bomb calorimeter evolves 39.12 kJ of heat. The products of the combustion are carbon dioxide gas and water liquid.
a) Calculate $\Delta E^{\circ}$ for the combustion of one mole of cyclohexane. [-3912 kJ$]$
b) Write the chemical equation for the reaction above and calculate $\Delta H^{\circ}$ for the combustion of cyclohexane. [-3920 kJ/mol]
c) Calculate the enthalpy of formation of cyclohexane from your calculated value of $\Delta \mathrm{H}^{\circ}$ for the combustion of cyclohexane and the molar enthalpies of formation of $\mathrm{CO}_{2}$ gas ( $-394 \mathrm{~kJ} / \mathrm{mol}$ ) and $\mathrm{H}_{2} \mathrm{O}$ liquid ( $-286 \mathrm{~kJ} / \mathrm{mol}$ ). [-160 kJ/mol]
6) One mole of He gas initially at $0^{\circ} \mathrm{C}$ and 1.0 atm is warmed up to $27^{\circ} \mathrm{C}$ at a constant pressure of 1.0 atm, calculate:
a) The $\Delta V$ for this process [2.24 L]
b) The change in internal energy, $\Delta \mathrm{E}$, for this process [Hint: He behaves like an ideal gas, so $E=1.5 n R T]\left[3.4 \times 10^{2} \mathrm{~J}\right]$
c) The work (w) done by the He [about - $\mathbf{2 2 5} \mathrm{J}$ ]
d) The heat (q) transfered [about $\left.5.65 \times 10^{2} \mathrm{~J}\right]$
e) $\Delta H$ for the process $\left[\Delta H=q_{p} \cong 5.65 \times 10^{2} \mathrm{~J}\right]$
7) Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ and acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ have the same empirical formula, CH . Which compound releases more energy per mole of CH ? $\Delta \mathrm{H}^{\circ}$ f of gaseous $\mathrm{C}_{6} \mathrm{H}_{6}=+83 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{H}^{\circ}{ }_{f}$ of $\left.\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})=+227 \mathrm{~kJ} / \mathrm{mol}\right)$
[ $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$ produces about $100 \mathrm{~kJ} / \mathrm{mol} \mathrm{CH}$ more than $\left.\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})\right]$
8) A typical candy bar has a mass of about 60 g .
a) Assuming that a candy bar is $100 \%$ sugar and that 1.0 g of sugar is equivalent to about 17 kJ of energy, calculate the energy in kJ contained in this typical candy bar. [1.0 $\left.\times \mathbf{1 0}^{\mathbf{3}} \mathrm{kJ}\right]$
b) If cycling at 23 kph requires $2.0 \times 10^{3} \mathrm{~kJ} / \mathrm{hr}$, approximately how many minutes of cycling would be needed to burn the energy produced from this candy bar? [30]

