THERMODYNAMICS (no calculator)

(All questions may be completed without a calculator. Answers given were generated without a calculator.)

- 1) For oxygen difluoride, $OF_2(g)$, the Gibbs free energy of formation is +40.6 kJ/mol.
 - a) Is the preparation of $OF_2(g)$ from its elements at 25°C a spontaneous reaction? [No, since $\Delta G^\circ > 0$.]
 - b) For ozone, $O_3(g)$, the Gibbs free energy of formation is +163.43 kJ/mol. Is it theoretically possible to prepare $OF_2(g)$ at 25°C by the reaction

3 F₂(g) + O₃(g) = 3 OF2(g)

[Yes, since $\Delta G^{\circ} < 0$]

- 2) The standard enthalpy of formation of CS₂(I) is +88 kJ/mol. The absolute molar entropy (S°) of C(graphite) is 6 J/mol-K, of S(rhombic) is 32 J/mol-K, and of CS₂(I) is 151 J/mol-K. Calculate the standard Gibbs free energy of formation of CS₂(I). **[+64 kJ/mol]**
- 3) Determine the approximate K_p value for the following reaction at 298 K:

 $SO_2(g) + NO_2(g) \implies SO_3(g) + NO(g)$

given the molar Gibbs Free Energies of formation at 298 K:

 $SO_2(g) = -300 \text{ kJ/mol}; NO_2(g) = +51 \text{ kJ/mol}; SO_3(g) = -371 \text{ kJ/mol} and NO(g) = +87 \text{ kJ/mol}$ [about 1 x 10⁶]

- 4) For each reaction, predict the sign and find the value of ΔS° :
 - a) $3NO_2(g) + H_2O(I) = 2HNO_3(I) + NO(g)$
 - b) $N_2(g) + 3F_2(g) \implies 2NF_3(g)$
 - c) $C_6H_{12}O_6(s) + 6O_2(g) \implies 6CO_2(g) + 6H_2O(g)$

[Answers:

- (a) negative, about -2.7 x 10^2 J/K
- (b) negative, about $-2.8 \times 10^2 \text{ J/K}$
- (c) positive, about +9.7 x 10^2 J/K]

5) One reaction used to produce small quantities of H₂ is:

 $CH_3OH(g) = 2H_2(g) + CO(g)$

Given the following data:

Compound	ΔH° _{f,298} (kJ/mol)	S° ₂₉₈ (J/mol-K)
CH₃OH(g)	-201	238
H ₂ (g)		131
CO(g)	-110	198

- a) Determine ΔH°_{298} and ΔS°_{298} for the reaction.
- b) Assuming that these values are relatively independent of temperature, calculate ΔG° at 38°C, 138°C, and 238°C.
- c) What is the significance of the different values of ΔG° ?

[Answers:

- (a) $\Delta H^{\circ} \approx +91 \text{ kJ and } \Delta S^{\circ} \approx +222 \text{ J/K}$
- (b) $\Delta G^{\circ}_{38^{\circ}C} > 0; \Delta G^{\circ}_{138^{\circ}C} \approx 0; \Delta G^{\circ}_{238^{\circ}C} < 0$
- (c) Not spontaneous at 38°C, at equilibrium at 138°C and spontaneous at 238°C.]
- 6) Complete the table below. Use either + (greater than zero), (less than zero) or 0 for the values of ΔH , ΔS , and ΔG . Use either "spontaneous" or "not spontaneous" for the comment.

	ΔS _{sys}	ΔH_{sys}	ΔG _{sys}	Comment
(a)	+	-	-	
(b)		0	-	Spontaneous
(c)	-	+		Not spontaneous
(d)	0		-	Spontaneous
(e)		0	+	
(f)	+	+		Spontaneous only when $T\Delta S > \Delta H$

[(a) spontaneous; (b) positive; (c) positive; (d) negative; (e) negative and not spontaneous; (f) negative]

- 7) For the gaseous reaction between N_2O_5 and F_2 to form NF₃ and O_2 :
 - a) Write a balanced reaction.
 - b) Determine $\Delta G^{\circ}_{rxn,298}$, given that the molar free energies of formation of N₂O₅(g) and NF₃(g) are 118 kJ and -83.3 kJ respectively.

[Answers: (a) $2N_2O_5(g) + 6F_2(g) = 4NF_3(g) + 5O_2(g)$; (b) -569 kJ]

8) Consider the formation of ammonia:

 $N_2(g) + 3H_2(g) \implies 2NH_3(g)$

- a) Calculate ΔH° and ΔS° for the reaction, given the molar enthalpy of formation of NH₃(g) is -45.9 kJ, and the molar entropies of N₂(g), H₂(g), and NH₃(g) are 191.5 J/K, 130.6 J/K, and 193 J/K respectively.
- b) Assuming that ΔH° and ΔS° are independent of temperature, find the temperature at which $K_{p} = 1.00$.
- c) Find K_p at 400°C, a typical temperature for NH_3 production.
- d) Given the lower K_p at the higher temperature, why are these conditions used industrially?

[Answers:

- (a) $\Delta H^\circ = -91.8 \text{ kJ}$ and $\Delta S^\circ = -197 \text{ J/K}$,
- (b) K = 1.00 at about 4.6 x 10² K
- (c) about 1 x 10⁻⁴
- (d) Because at higher temperatures the rate of the reaction is faster (chemical kinetics) and therefore more ammonia per unit time is produced under these conditions.

9) For the reaction:

 $NH_4CO_2NH_2(s) \implies 2NH_3(g) + CO_2(g)$

 ΔG°_{298} = +31.0 kJ and ΔH°_{298} = +160 kJ

- a) Calculate the approximate value of K_p at 298 K. [4 x 10⁻⁶]
- b) Calculate the approximate P_{NH3} and P_{CO2} at equilibrium at 298 K. [$P_{CO2} \approx 1 \times 10^{-2}$ bar and $P_{NH3} \approx 2 \times 10^{-2}$ bar]
- c) Calculate the approximate value of K_p at 500 K. [2 x 10⁵]
- d) Calculate the approximate absolute molar entropy of NH₃ at 298 K given the following absolute molar entropies: CO₂(g) = 214 J/mol-K and NH₄CO₂NH₂(s) = 166 J/mol-K. [about 1.9 x 10² J/mol-K]
 K]
- 10) Given the following standard electrode potentials and Gibbs free energies of formation at 298 K answer the questions given below.

 $Cu^{2+}(aq) + 2e^{-1}$ Cu(s) $\epsilon^{\circ} = +0.337 V$
 $Cu^{+}(aq) + e^{-1}$ Cu(s) $\epsilon^{\circ} = +0.521 V$
 $\Delta G^{\circ}_{f,298}(Cu(OH)_2(s)) = -356 \text{ kJ/mol}$

a) Calculate ε° for the reaction

 $Cu^{2+}(aq) + e^{-1} = Cu^{+}(aq) [+0.152 V]$

b) Calculate ΔG° and K_c at 298 K for the reaction:

 $2 \operatorname{Cu}^{+}(\operatorname{aq}) = \operatorname{Cu}^{2+}(\operatorname{aq}) + \operatorname{Cu}(\operatorname{s})$

[-35 kJ and about 10⁶]

- c) Given the K_{sp} of Cu(OH)₂ is 1.6 x 10⁻¹⁹ calculate the $\Delta G^{\circ}_{f,298}$ for OH⁻¹(aq). [about -155 kJ/mol]
- d) Using the Gibbs free energies of formation at 298 K for the OH⁻¹(aq) and H⁺(aq) ions along with the ΔG°_{f,298} for H2O(I) (-237 kJ/mol), calculate the K_w for water at 25°C. [about 1 x 10⁻¹⁴]

11) For the reaction

 $Ag^{+}(aq) + I^{-1}(aq) \implies AgI(s)$

 ϵ°_{298} = +0.95 V and ΔS°_{298} = -73 J/K

- a) Calculate ΔG° for the above reaction at 298 K. [about -9 x 10¹ kJ]
- b) Calculate ΔH° this reaction at 298 K. [about -1.1 x 10² kJ]
- c) Given that the Gibbs free energy of formation of Ag⁺(aq) at 298 K is +77 kJ/mol, calculate ϵ°_{298} for the half-reaction

Ag(s) + I⁻¹(aq) AgI(s) + e⁻¹ [about +0.15 V]