Acid/base practice problems (calculator required)

1) Calculate the pH and pOH (at $25^{\circ} \mathrm{C}$, where $\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$) of the following mixtures:
a) 25.00 mL of $0.02015 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ and 12.75 mL of 0.04182 M HBr .
$[\mathrm{pH}=12.10, \mathrm{pOH}=1.90]$
b) 25.00 mL of $1.000 \mathrm{M} \mathrm{HF}\left(\mathrm{K}_{\mathrm{a}}=3.53 \times 10^{-4}\right)$. $\left.\mathbf{~} \mathbf{p H}=\mathbf{1 . 7 3}, \mathbf{p O H}=\mathbf{1 2 . 2 7}\right]$
c) 25.00 mL of 1.000 M HF and 5.00 mL of $1.25 \mathrm{M} \mathrm{NaOH} .[2.98 / \mathbf{1 1 . 0 2}]$
d) 25.00 mL of 1.000 M HF and 10.00 mL of 1.25 M NaOH [3.45/10.55]
e) 25.00 mL of 1.000 M HF and 15.00 mL of 1.25 M NaOH [3.93/10.07]
f) 25.00 mL of 1.000 M HF and 20.00 mL of 1.25 M NaOH [8.60/5.40]
g) 25.00 mL of 1.000 M HF and 25.00 mL of $1.25 \mathrm{M} \mathrm{NaOH} \mathbf{1 3 . 1 0 / 0 . 9 0}]$
h) 25.00 mL of $1.000 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4} . \mathrm{K}_{\mathrm{a} 2}$ for $\mathrm{H}_{2} \mathrm{SO}_{4}=1.1 \times 10^{-2}[\mathbf{- 0 . 0 0 5} / \mathbf{1 4 . 0 0 5}]$
i) 10.00 mL of $1.000 \mathrm{M} \mathrm{NH}_{3}\left(\mathrm{~K}_{\mathrm{b}}=1.75 \times 10^{-5}\right)[\mathbf{1 1 . 6 2 / 2 . 3 8}]$
j) 10.00 mL of $1.000 \mathrm{M} \mathrm{NH}_{3}$ and 5.00 mL of 1.000 M HCl [9.24/4.76]
k) 10.00 mL of $1.000 \mathrm{M} \mathrm{NH}_{3}$ and 10.00 mL of 1.000 M HCl [4.77/9.23]
l) $10.00 \mathrm{~mL}^{2}$ of $1.000 \mathrm{M} \mathrm{NH}_{3}$ and 15.00 mL of $1.000 \mathrm{M} \mathrm{HCl}[\mathbf{0 . 7 0 / 1 3 . 3 0}]$
2) Calculate the ratio of $\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]:\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]:\left\{\mathrm{HPO}_{4}{ }^{2-}\right]:\left[\mathrm{PO}_{4}{ }^{3-}\right]$ in a solution with a pH of 7 . If you were going to make a buffer of pH 7.00 and only allowed to use two of $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{NaH}_{2} \mathrm{PO}_{4}$, $\mathrm{Na}_{2} \mathrm{HPO}_{4}$, and $\mathrm{Na}_{3} \mathrm{PO}_{4}$, which would you pick? $\left[5.32: 3.78 \times 10^{5}: \mathbf{2 . 3 8} \times \mathbf{1 0}^{5}: \mathbf{1}\right]$
3) A certain indicator has a $\mathrm{pK}_{\text {ind }}=2.30$. You use it in the titration of 10.00 mL of 0.1000 M HCl with 0.1000 M NaOH . At what added volume of NaOH will the indicator change colour? Does this make it a good or a bad indicator for this titration? [$\mathbf{9 . 0 5} \mathbf{m L}, \mathrm{no}$]
4) Calculate the pH of a $5.0 \times 10^{-9} \mathrm{M}$ solution of $\mathrm{HCl}\left(\right.$ at $25^{\circ} \mathrm{C}$, where $\left.\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}\right)[\mathbf{6 . 9 8 9}]$.

The next question is extremely difficult. It is of bonus-question caliber and should not be attempted until all other questions have been answered correctly.
5) $\mathrm{H}_{2} \mathrm{SO}_{4}$ has a $\mathrm{K}_{\mathrm{a} 2}$ of 1.1×10^{-2}. How many mL of $1.000 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ must be added to 800.0 mL of $0.5000 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ to create a buffer of pH 1.75 ? [847.4]

