Extra thought thermodynamics question:

(To duplicate the answers here exactly, you'll need to use the values of the Faraday constant and the ideal gas constant I used; they were 96485.3251 coul/mol and 8.3144598 J/mol·K respectively.)

1) The reaction

 $2H_2(g) + O_2(g) \longrightarrow 2H_2O(l)$

has $\varepsilon^{\circ} = 1.22889318$ V at 25°C, and $\varepsilon^{\circ} = 1.20773634$ V at 50°C. Using *only* this information, answer the following questions:

- a) Calculate ΔH° and ΔS° for the reaction. [$\Delta H^{\circ} = -571.66 \text{ kJ}; \Delta S^{\circ} = -326.612 \text{ J/K}$]
- b) If the equilibrium pressure of O₂ at 25°C is found to be 2.0 bar, what will be the equilibrium pressure of H₂ at 25°C in a battery constructed from these chemicals?
 [2.015 x 10⁻⁴² bar]
- c) Will the cell potential ever drop to zero volts if the hydrogen and oxygen pressure are each 5.0 bar? If so, at what temperature will this occur? **[1995.55 K or 1722.40°C]**
- d) Calculate K_c for the cell at 50°C.[4.27 x 10⁷⁹]
- e) Calculate $\Delta H^{\circ}_{f}(H_2O(1))$. [-285.83 kJ]
- f) Given that S° for H₂ is 130.68 J/K and S° for O₂ is 205.152 J/K, calculate S° for H₂O(l). [69.95 J/K]
- g) Finally, given that $K_w = 1.01 \times 10^{-14}$ at 25°C for the reaction

 $H_2O(l) \implies H^+(aq) + OH^-(aq)$

and that ΔH° for the reaction immediately above is +55.815 kJ, calculate S° and ΔH°_{f} for the OH (aq) anion. Use any data necessary from the previous questions.

 $[\Delta H^{\circ}_{f} = -230.015 \text{ kJ}; \text{ S}^{\circ} = -10.79 \text{ J/K}]$