Extra thought thermodynamics question:

(To duplicate the answers here exactly, you'll need to use the values of the Faraday constant and the ideal gas constant I used; they were $96485.3251 \mathrm{coul} / \mathrm{mol}$ and $8.3144598 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$ respectively.)

1) The reaction

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

has $\varepsilon^{\circ}=1.22889318 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$, and $\varepsilon^{\circ}=1.20773634 \mathrm{~V}$ at $50^{\circ} \mathrm{C}$. Using only this information, answer the following questions:
a) Calculate $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ for the reaction. [$\left.\Delta \mathrm{H}^{\circ}=\mathbf{- 5 7 1 . 6 6} \mathbf{~ k J ; ~} \Delta \mathbf{S}^{\circ}=\mathbf{- 3 2 6 . 6 1 2} \mathbf{~ J} / \mathrm{K}\right]$
b) If the equilibrium pressure of O_{2} at $25^{\circ} \mathrm{C}$ is found to be 2.0 bar , what will be the equilibrium pressure of H_{2} at $25^{\circ} \mathrm{C}$ in a battery constructed from these chemicals? [2.015×10^{-42} bar]
c) Will the cell potential ever drop to zero volts if the hydrogen and oxygen pressure are each 5.0 bar? If so, at what temperature will this occur? [1995.55 K or $\mathbf{1 7 2 2 . 4 0}{ }^{\circ} \mathbf{C}$]
d) Calculate K_{c} for the cell at $50^{\circ} \mathrm{C} .\left[4.27 \times \mathbf{1 0}^{\mathbf{7 9}}\right]$
e) Calculate $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)$. [-285.83 kJ]
f) Given that S° for H_{2} is $130.68 \mathrm{~J} / \mathrm{K}$ and S° for O_{2} is $205.152 \mathrm{~J} / \mathrm{K}$, calculate S° for $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$. [69.95 J/K]
g) Finally, given that $K_{w}=1.01 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$ for the reaction

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

and that $\Delta \mathrm{H}^{\circ}$ for the reaction immediately above is +55.815 kJ , calculate S° and $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}$ for the $\mathrm{OH}^{-}(\mathrm{aq})$ anion. Use any data necessary from the previous questions.

$$
\left[\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}=-230.015 \mathrm{~kJ} ; \mathrm{S}^{\circ}=-10.79 \mathrm{~J} / \mathrm{K}\right]
$$

