Electrochemistry problems (calculator required)
Note: Some of these problems will require you to look up necessary information from your textbook. All the information you need will be there.

1. Calculate $\varepsilon^{\circ}\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$ for a galvanic cell based on the following half-reactions (in acidic solution):
$\underset{\mathrm{I}_{2}(\mathrm{aq}) \xrightarrow{\mathrm{MnO}_{4}^{-}(\mathrm{aq})} \longrightarrow \mathrm{IO}_{3}^{-}(\mathrm{aq})}{\longrightarrow} \mathrm{Mn}^{2+}(\mathrm{aq})$
Calculate the voltage for a cell with a $\mathrm{pH}=2.0, \mathrm{Mn}^{2+}$ and $\mathrm{IO}_{3}{ }^{-}$are each 0.50 M , and I_{2} and $\mathrm{MnO}_{4}{ }^{-}$are each 0.0010 M . Give the full cell notation for the reaction using the conditions given. $\left[\varepsilon^{\circ}=\mathbf{0 . 3 1} \mathbf{v}, \boldsymbol{\varepsilon}=\mathbf{0 . 2 1 6 6} \mathbf{v}\right]$
2. Find the EMF of a cell in which a standard hydrogen electrode is coupled to an electrode with 0.1 M acetic acid and hydrogen gas at 1.0 bar pressure. (Hint: acetic acid is a weak acid with a $K_{a}=1.8 \times 10^{-5}$.) $[\varepsilon=\mathbf{0 . 1 6 9 9} \mathbf{v}]$
3. Find ε° and $\mathrm{K}\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$ for the equilibrium

$$
\mathrm{AgCl}(\mathrm{~s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

Will the EMF increase or decrease if the Ag^{+}concentration is raised above 1 M ? Explain your answer. [$\varepsilon^{\circ}=\mathbf{- 0 . 5 7 7 7} \mathbf{v}, K=\mathbf{1 . 7 2 \times 1 0} \times \mathbf{- 1}^{\mathbf{- 1 0}}$, decrease]
4. A hydrogen/oxygen fuel cell has the net reaction
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
and the cell is operated under acidic conditions. The cell is constructed with $\mathrm{P}_{\mathrm{H} 2}=2.00$ bar and $\mathrm{P}_{\mathrm{O} 2}=0.20$ bar and run at a temperature of $25^{\circ} \mathrm{C}$. What voltage will be produced by the fuel cell? Is it possible to vary the pressure of hydrogen only (with the pressure of O_{2} fixed at 0.20 bar) so that the battery produces 10.0 volts at $25^{\circ} \mathrm{C}$? If so, what would the pressure of H_{2} have to be to obtain this voltage? Do you think it would be possible to build such a battery? [$\varepsilon=1.228 \mathrm{v}, 7.37 \times 10^{\mathbf{2 9 6}}$ bar, NO]
5. Using the following half-reactions (which occur in acidic solution):
$\mathrm{ClO}_{4}^{-}(\mathrm{aq}) \longrightarrow \mathrm{ClO}_{3}^{-}(\mathrm{aq})$
$\mathrm{ClO}_{3}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Cl}^{-}(\mathrm{aq})$
Determine whether the chlorate $\left(\mathrm{ClO}_{3}{ }^{-}\right)$ion disproportionates spontaneously in acidic solution under standard conditions at $25^{\circ} \mathrm{C}$. What are ε° and K for the disproportionation? $\left[\varepsilon^{\circ}=0.261 \mathrm{v}, \mathrm{K}=2.96 \times 10^{26}\right.$]
6. Given the half-reactions
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{MnO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \varepsilon^{\circ}=1.70 \mathrm{~V}$
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}^{+2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \varepsilon^{\circ}=1.23 \mathrm{~V}$

Determine ε° for the half reaction
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}^{+2}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
[$\left.\varepsilon^{\circ}=1.512 \mathrm{v}\right]$
7. A concentration cell is set up as follows:
$\operatorname{Pt}(\mathrm{s})\left|\mathrm{Fe}^{+2}(\mathrm{aq}, 0.200 \mathrm{M}), \mathrm{Fe}^{+3}(\mathrm{aq}, 0.00200 \mathrm{M}) \| \mathrm{Fe}^{+3}(\mathrm{aq}, 0.15 \mathrm{M}), \mathrm{Fe}^{+2}(\mathrm{aq}, 0.004 \mathrm{M})\right| \operatorname{Pt}(\mathrm{s})$
0.500 litre beakers are used. A current of 2.0 A is drawn from the cell.
a) What voltage will be initially produced by the cell? [0.2114 v]
b) What voltage will the cell produce after ten minutes of operation? [$\mathbf{0 . 0 8 5 8 3} \mathbf{~ v}$]
c) How many minutes may the cell be run before it produces no voltage? [$\mathbf{3 3} \mathbf{~ m i n ~} \mathbf{5 2} \mathbf{~ s e c}$]
8. When the cell
$\operatorname{Pt}(\mathrm{s})\left|\mathrm{F}^{-}(\mathrm{aq}, 1 \mathrm{M})\right| \mathrm{F}_{2}(\mathrm{~g}) \| \mathrm{Cr}^{+2}(\mathrm{aq}, 1 \mathrm{M}) \mid \mathrm{Cr}(\mathrm{s})$
is run, what will be produced at the anode and what at the cathode?
[O_{2} at anode, H_{2} at cathode]

