Equilibrium problems (calculator required)

1. For the equilibrium

$$CO_2(g) \longrightarrow CO(g) + 1/2O_2(g)$$

$$K_c = 1.72 \times 10^{-46} \text{ at } 25^{\circ}\text{C}.$$

- a) Evaluate K_P at 25°C. [8.56 x 10⁻⁴⁶]
- b) If a flask initially containing only 1.00 bar of CO₂ is allowed to come to equilibrium, what will be the equilibrium pressure of each species?

$$[P_{CO2} = 1 \text{ bar}; P_{CO} = 1.1 \text{ x } 10^{-30} \text{ bar}; P_{O2} = 5.7 \text{ x } 10^{-31} \text{ bar}]$$

- c) Do you expect that this reaction will be exothermic or endothermic? Why? [endo]
- 2. Bromine and chlorine both dissolve in carbon tetrachloride, whereupon they react (slowly) to form BrCl:

$$Br_2(CCI_4) + CI_2(CCI_4) \implies 2BrCI(CCI_4)$$

Under equilibrium conditions at 25° C, $[Br_2] = [Cl_2] = 0.0043$ M, and [BrCl] = 0.0114 M.

- a) Evaluate the equilibrium constant for this reaction at 25°C. [7.03]
- b) If 0.078 moles of BrCl were added to the equilibrium mixture above, what would be the new equilibrium concentrations of all species present? Assume 1 L of solution.

$$[Br_2] = [Cl_2] = 0.02107 M; [BrCl] = .05586 M$$

3. Predict the effect each of the following would have on the equilibrium reaction:

$$CoCl_4^{-2}(aq) + 6H_2O(l)$$
 $Co(H_2O)_6^{+2}(aq) + 4Cl^{-1}(aq)$ $\Delta H = -14 \text{ kJ}$

Indicate your choice by writing shift **R**ight, shift **L**eft, or **N**o change:

- a) Adding concentrated HCl
- b) Heating the reaction
- c) Adding AgNO₃ (AgCl is insoluble)

d) Adding water

[L L R R]

4. The ionization of water is an equilibrium process for which $K_c = 1.0 \text{ x } 10^{-14} \text{ at } 25^{\circ}\text{C}$:

$$H_2O(1)$$
 \longrightarrow $H^+(aq) + OH^-(aq)$ $\Delta H = +55.8 \text{ kJ}$

Determine the $[H^+]$ in water at 50°C. [2.39 x 10⁻⁷]

- 5. The normal boiling point of methanol is 64.65°C and its enthalpy of vaporization is 37.85 kJ/mol. What is its vapour pressure at 21.0°C? [102.8 mmHg]
- 6. Ammonium carbamate, NH₄CO₂NH₂, dissociates according to the exothermic reaction:

$$NH_4CO_2NH_2(s) = 2 NH_3(g) + CO_2(g) K_p = 4.62 \times 10^{-4} at 25^{\circ}C$$

- a) If 1.00 g of ammonium carbamate is placed in a 1.00 L sealed, evacuated flask at 25°C, calculate the total pressure in the flask at equilibrium. ($P_T = 0.146 \text{ bar}$)
- b) What mass of ammonium carbamate will be left at equilibrium in the experiment described in part a)? (0.84 g)
- c) If 1.00 g of ammonium carbamate is placed in the same 1.00 L evacuated flask and some CO₂ is added so that the partial pressure of CO₂ at equilibrium is 1.00 atm, calculate the partial pressure of NH₃ when the system comes to equilibrium at 25 °C. (0.0214 bar)
- 7. The fastest growing use of methanol is to make the octane enhancer, methyl *tert*-butyl ether. Today all methanol is produced by the reaction of carbon monoxide and hydrogen. The value of K_p for this reaction is 1.3×10^{-4} at 300.°C.
 - a) Write the equilibrium reaction for the production of methanol.

$$(2H_2(g) + CO(g) \longrightarrow CH_3OH(g))$$

- b) What is the value of K_c at 300.°C? (0.30)
- c) In which direction will this reaction shift if the temperature is raised, given that the ΔH°_{rxn} = -90.7 kJ. Explain! (shifts to left because heat is a product when rxn. is exothermic, try to use up "excess" heat to re-establish eqm.)
- d) In the industrial process, the stoichiometric ratio of CO to H₂ is used. If the reaction is carried out at an initial total pressure of 300. bar, what are the initial partial pressures of CO and H₂? (100. bar CO, 200. bar H₂)
- 8. A flask initially contains only NOBr gas. Once heated to a temperature T, 34.0 % of the original gas decomposes via the following equation to give a total pressure of 0.25 bar at equilibrium:

$$2 \text{ NOBr } (g) = 2 \text{ NO}(g) + \text{Br}_2(g)$$

- a) Determine the original pressure of NOBr in the flask. (0.21 bar)
- b) What is the value of K_p at this temperature T? (9.6×10^{-3})
- c) If the value of K_c at this temperature T is 3.87×10^{-4} , determine the temperature T. (25°C)

9. For the equilibrium:

$$PCl_5(g) = PCl_3(g) + Cl_2(g)$$

At a given temperature T_1 , $K_p = 2.25$. An unknown quantity of pure $PCl_5(g)$ is placed in an evacuated flask at a temperature T_1 when equilibrium is established, the partial pressure of $PCl_5(g)$ is 0.25 bar.

- a) What are the partial pressures of PCl₃ and Cl₂ at equilibrium? (0.75 bar)
- b) Determine the original pressure of PCl₅ (before any reaction) and the % dissociation of PCl₅. (1.00 bar, 75 %)
- c) What is the value of K_c for the process if T_1 equals 375 °C? (0.0418)

10. For the following system:

$$C(s) + CO_2(g) = 2CO(g)$$

At 700. $^{\circ}$ C in a 2.00 L flask there are 0.100 moles of CO, 0.200 moles of CO₂, and 0.400 moles of C at equilibrium. At 600. $^{\circ}$ C, an additional 0.0400 moles of C forms at equilibrium.

- a) The process as written is: exothermic or **endothermic**.
- b) Determine the value of K_c at 600. °C and 700. °C. ($K_c = 0.0250$ at 700. °C, 8.3×10^{-4} at 600. °C)
- c) An additional 0.200 moles of C is added to the flask at 600. °C. What will be the effect on:

11. Consider the equilibrium:

$$4 \text{ NH}_3(g) + 5 \text{ O}_2(g) = 4 \text{ NO}_2(g) + 6 \text{ H}_2\text{O}(l)$$
 $\Delta H^{\circ} = -1381 \text{ kJ}$

Predict whether the equilibrium amount of NH₃ will increase or decrease and the direction that the reaction will shift in order to establish a new equilibrium if:

- a) the volume of the system is decreased (1,shifts to right)
- b) the temperature of the system is increased (\frac{1}{2}, shifts to left)
- c) some O_2 is added to the container (\downarrow , shifts to right)
- d) some He is added to the container (no effect)
- e) some NH₃ is added to the container (\uparrow , shifts to right)
- f) some H₂O is removed from the container (no effect as long as some water remains)

12. 0.024 mole of N_2O_4 was introduced into a 0.375 L flask at 25°C. Determine the equilibrium concentrations of N_2O_4 and NO_2 at 25.0 °C. ($N_2O_4 = 0.056$ M; $NO_2 = 0.016$ M)

$$N_2O_4(g) = 2 NO_2(g)$$
 $K_c = 4.61 \times 10^{-3} \text{ at } 25^{\circ}\text{C}$

13. 0.150 mol of antimony sulfide and 0.500 mol of H₂ were placed in a 500 mL flask and heated to 713 K. What are the equilibrium concentrations of H₂ and H₂S at 713 K? ([H₂] = 0.570 M; [H₂S] = 0.430 M)

$$Sb_2S_3(s) + 3H_2(g) \implies 2Sb(s) + 3H_2S(g)$$
 $K_c = 0.429$ at 713 K

14. 0.100 mol of H₂ and 0.100 mol of HI were placed in a 1.00 L container and heated to 445 °C. Determine all equilibrium concentrations. ([H₂] = 0.102 M; [I₂] = 1.81 × 10 $^{-3}$ M, [HI] = 0.0964 M))

$$H_2(g) + I_2(g) = 2 HI(g)$$
 $K_c = 50.2 \text{ at } 445 \text{ }^{\circ}\text{C}$