Equilibrium problems (calculator required)

1. For the equilibrium
$\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{c}}=1.72 \times 10^{-46}$ at $25^{\circ} \mathrm{C}$.
a) Evaluate K_{P} at $25^{\circ} \mathrm{C}$. [8.56 $\times \mathbf{1 0}^{-46}$]
b) If a flask initially containing only 1.00 bar of CO_{2} is allowed to come to equilibrium, what will be the equilibrium pressure of each species?
[$\left.\mathrm{P}_{\mathrm{CO} 2}=1 \mathrm{bar} ; \mathrm{P}_{\mathrm{CO}}=1.1 \times 10^{-30} \mathrm{bar} ; \mathrm{P}_{\mathrm{O}}=5.7 \times \mathbf{1 0}^{-31} \mathrm{bar}\right]$
c) Do you expect that this reaction will be exothermic or endothermic? Why? [endo]
2. Bromine and chlorine both dissolve in carbon tetrachloride, whereupon they react (slowly) to form BrCl :
$\mathrm{Br}_{2}\left(\mathrm{CCl}_{4}\right)+\mathrm{Cl}_{2}\left(\mathrm{CCl}_{4}\right) \rightleftharpoons 2 \mathrm{BrCl}\left(\mathrm{CCl}_{4}\right)$
Under equilibrium conditions at $25^{\circ} \mathrm{C},\left[\mathrm{Br}_{2}\right]=\left[\mathrm{Cl}_{2}\right]=0.0043 \mathrm{M}$, and $[\mathrm{BrCl}]=0.0114 \mathrm{M}$.
a) Evaluate the equilibrium constant for this reaction at $25^{\circ} \mathrm{C}$. [7.03]
b) If 0.078 moles of BrCl were added to the equilibrium mixture above, what would be the new equilibrium concentrations of all species present? Assume 1 L of solution.
$\left[\mathrm{Br}_{2}\right]=\left[\mathrm{Cl}_{2}\right]=\mathbf{0 . 0 2 1 0 7} \mathrm{M} ;[\mathrm{BrCl}]=.05586 \mathrm{M}$
3. Predict the effect each of the following would have on the equilibrium reaction:

$$
\mathrm{CoCl}_{4}^{-2}(a q)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}_{6}{ }_{6}^{+2}(\mathrm{aq})+4 \mathrm{Cl}^{-}(a q) \quad \Delta \mathrm{H}=-14 \mathrm{~kJ}\right.
$$

Indicate your choice by writing shift $\underline{\text { Right, }}$ shift $\underline{\text { Left, or }} \underline{\mathbf{N} o}$ change:
a) Adding concentrated HCl
b) Heating the reaction
c) Adding $\mathrm{AgNO}_{3}(\mathrm{AgCl}$ is insoluble)
d) Adding water

[L L R R]

4. The ionization of water is an equilibrium process for which $\mathrm{K}_{\mathrm{c}}=1.0 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$:

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$$
\Delta \mathrm{H}=+55.8 \mathrm{~kJ}
$$

Determine the $\left[\mathrm{H}^{+}\right]$in water at $50^{\circ} \mathrm{C}$. $\left[2.39 \times \mathbf{1 0}^{-7}\right]$
5. The normal boiling point of methanol is $64.65^{\circ} \mathrm{C}$ and its enthalpy of vaporization is $37.85 \mathrm{~kJ} / \mathrm{mol}$. What is its vapour pressure at $21.0^{\circ} \mathrm{C}$? $[102.8 \mathrm{mmHg}]$
6. Ammonium carbamate, $\mathrm{NH}_{4} \mathrm{CO}_{2} \mathrm{NH}_{2}$, dissociates according to the exothermic reaction:
$\mathrm{NH}_{4} \mathrm{CO}_{2} \mathrm{NH}_{2}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \mathrm{K}_{\mathrm{p}}=4.62 \times 10^{-4}$ at $25^{\circ} \mathrm{C}$
a) If 1.00 g of ammonium carbamate is placed in a 1.00 L sealed, evacuated flask at $25^{\circ} \mathrm{C}$, calculate the total pressure in the flask at equilibrium. ($\mathbf{P}_{\mathbf{T}}=\mathbf{0 . 1 4 6} \mathbf{~ b a r}$)
b) What mass of ammonium carbamate will be left at equilibrium in the experiment described in part a)? ($\mathbf{0 . 8 4} \mathbf{~ g}$)
c) If 1.00 g of ammonium carbamate is placed in the same 1.00 L evacuated flask and some CO_{2} is added so that the partial pressure of CO_{2} at equilibrium is 1.00 atm , calculate the partial pressure of NH_{3} when the system comes to equilibrium at $25^{\circ} \mathrm{C}$. ($\mathbf{0 . 0 2 1 4}$ bar)
7. The fastest growing use of methanol is to make the octane enhancer, methyl tert-butyl ether. Today all methanol is produced by the reaction of carbon monoxide and hydrogen. The value of K_{p} for this reaction is 1.3×10^{-4} at $300 .{ }^{\circ} \mathrm{C}$.
a) Write the equilibrium reaction for the production of methanol.
$\left.\mathbf{(2 H _ { 2 }} \mathbf{(g)}+\mathbf{C O}(\mathrm{g}) \rightleftharpoons \mathbf{C H}_{3} \mathbf{O H}(\mathrm{~g})\right)$
b) What is the value of K_{c} at $300 .{ }^{\circ} \mathrm{C}$? (0.30)
c) In which direction will this reaction shift if the temperature is raised, given that the $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-90.7 \mathrm{~kJ}$. Explain! (shifts to left because heat is a product when rxn. is exothermic, try to use up 'excess" heat to re-establish eqm.)
d) In the industrial process, the stoichiometric ratio of CO to H_{2} is used. If the reaction is carried out at an initial total pressure of 300 . bar, what are the initial partial pressures of CO and H_{2} ? (100. bar CO, 200. bar $\mathbf{H}_{\mathbf{2}}$)
8. A flask initially contains only NOBr gas. Once heated to a temperature T, 34.0% of the original gas decomposes via the following equation to give a total pressure of 0.25 bar at equilibrium:
$2 \mathrm{NOBr}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g})$
a) Determine the original pressure of NOBr in the flask. (0.21 bar)
b) What is the value of K_{p} at this temperature T ? $\left(9.6 \times \mathbf{1 0}^{-\mathbf{3}}\right)$
c) If the value of K_{c} at this temperature T is 3.87×10^{-4}, determine the temperature T . $\left(\mathbf{2 5}^{\circ} \mathrm{C}\right)$
9. For the equilibrium:
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
At a given temperature $\mathrm{T}_{1}, \mathrm{~K}_{\mathrm{p}}=2.25$. An unknown quantity of pure $\mathrm{PCl}_{5}(\mathrm{~g})$ is placed in an evacuated flask at a temperature T_{1}. when equilibrium is established, the partial pressure of $\mathrm{PCl}_{5}(\mathrm{~g})$ is 0.25 bar.
a) What are the partial pressures of PCl_{3} and Cl_{2} at equilibrium? (0.75 bar)
b) Determine the original pressure of PCl_{5} (before any reaction) and the $\%$ dissociation of PCl_{5}. (1.00 bar, $\mathbf{7 5}$ \%)
c) What is the value of K_{c} for the process if T_{1} equals $375^{\circ} \mathrm{C}$? (0.0418)
10. For the following system:

$$
\mathrm{C}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})
$$

At $700 .{ }^{\circ} \mathrm{C}$ in a 2.00 L flask there are 0.100 moles of $\mathrm{CO}, 0.200$ moles of CO_{2}, and 0.400 moles of C at equilibrium. At $600 .{ }^{\circ} \mathrm{C}$, an additional 0.0400 moles of C forms at equilibrium.
a) The process as written is: exothermic or endothermic.
b) Determine the value of K_{c} at $600 .{ }^{\circ} \mathrm{C}$ and $700 .{ }^{\circ} \mathrm{C}$. $\left(\boldsymbol{K}_{\boldsymbol{c}}=\mathbf{0 . 0 2 5 0}\right.$ at $700 .{ }^{\circ} \mathrm{C}, \mathbf{8 . 3} \times \mathbf{1 0}^{-4}$ at $600 .{ }^{\circ} \mathrm{C}$)
c) An additional 0.200 moles of C is added to the flask at $600 .{ }^{\circ} \mathrm{C}$. What will be the effect on:

i)	K_{c}	increase	decrease	no effect
ii)	P_{CO}	increase	decrease	no effect
iii)	$\mathrm{P}_{\mathrm{CO}_{2}}$	increase	decrease	no effect

11. Consider the equilibrium:
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H^{\circ}=-1381 \mathrm{~kJ}$
Predict whether the equilibrium amount of NH_{3} will increase or decrease and the direction that the reaction will shift in order to establish a new equilibrium if:
a) the volume of the system is decreased (\downarrow,shifts to right)
b) the temperature of the system is increased (\uparrow,shifts to left)
c) some O_{2} is added to the container (\downarrow,shifts to right)
d) some He is added to the container (no effect)
e) some NH_{3} is added to the container (\uparrow, shifts to right)
f) some $\mathrm{H}_{2} \mathrm{O}$ is removed from the container (no effect as long as some water remains)
12. 0.024 mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ was introduced into a 0.375 L flask at $25^{\circ} \mathrm{C}$. Determine the equilibrium concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at $25.0^{\circ} \mathrm{C}$. $\left(\mathbf{N}_{2} \mathrm{O}_{4}=\mathbf{0 . 0 5 6} \mathbf{~ M} ; \mathbf{N O}_{2}=\mathbf{0 . 0 1 6} \mathbf{~ M}\right)$

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=4.61 \times 10^{-3} \text { at } 25^{\circ} \mathrm{C}
$$

13. 0.150 mol of antimony sulfide and 0.500 mol of H_{2} were placed in a 500 mL flask and heated to 713 K . What are the equilibrium concentrations of H_{2} and $\mathrm{H}_{2} \mathrm{~S}$ at 713 K ? $\left(\left[\mathrm{H}_{2}\right]=0.570 \mathrm{M} ;\left[\mathrm{H}_{2} \mathrm{~S}\right]=\mathbf{0 . 4 3 0} \mathrm{M}\right.$)

$$
\mathrm{Sb}_{2} \mathrm{~S}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Sb}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=0.429 \text { at } 713 \mathrm{~K}
$$

14. 0.100 mol of H_{2} and 0.100 mol of HI were placed in a 1.00 L container and heated to $445^{\circ} \mathrm{C}$. Determine all equilibrium concentrations. $\left(\left[\mathbf{H}_{2}\right]=\mathbf{0 . 1 0 2} \mathbf{M} ;\left[\mathbf{I}_{2}\right]=\mathbf{1 . 8 1} \times \mathbf{1 0}^{-\mathbf{3}} \mathbf{M}\right.$, $[\mathrm{HI}]=\mathbf{0 . 0 9 6 4} \mathbf{~ M})$)

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=50.2 \text { at } 445^{\circ} \mathrm{C}
$$

