Kinetics Problems (calculator required)

- 1. The rate equation for the reaction: $2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$ is second order in NO(g) and first order in $H_2(g)$.
 - a) Write an equation for the rate of appearance of $N_2(g)$. (rate = k[NO]²[H₂])
 - b) If concentrations are expressed in mol/Litre, what units would the rate constant, k, have?
 (M⁻²s⁻¹)
 - c) Write an equation for the rate of disappearance of NO(g). Would k in this equation have the same numerical value as k in the equation of part (a)? (rate = 2k[NO]²[H₂], yes)
- 2. For a reaction in which A and B combine to form C, the following data were obtained:

measured reaction rate (mol/L-s)	[A] (mol/L)	[B] (mol/L)
0.0007	0.30	0.15
0.0028	0.60	0.30
0.0014	0.30	0.30

- a) What is the rate law for the reaction? (**rate = k[A][B]**)
- b) What is the numerical value of and units for the rate constant, k? (1.56 x 10⁻² M⁻¹s⁻¹)
- 3. The following data for the hydrolysis of $(CH_3)_3CBr$ in a solvent consisting of 10% water and 90% acetone were obtained at 25°C:

<u>t(h)</u>	[(CH ₃) ₃ CBr], M
0.00	0.1039
3.15	0.0896
4.10	0.0859
6.20	0.0776
8.20	0.0701

- 10.0 0.0639
- 26.0 0.0270
- a) Prepare a graph of concentration versus time, and use it to determine the initial reaction rate and the rate at 14.0 hours. (5.4 x 10⁻³ M-hr⁻¹, 2.6 x 10⁻³ M-hr⁻¹)
- b) Show graphically that the hydrolysis of (CH₃)₃CBr follows first order kinetics.
- c) Evaluate the rate constant at 25° C. (5.22 x 10^{-2} hr⁻¹)
- d) How many hours would it take to hydrolyze 80% of a sample of (CH₃)₃CBr at 25°C? (31)

4. A study of the reaction

 $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$

at 593 K shows that it is first order and that 10.0% of the SO₂Cl₂ decomposes in 80.0 minutes.

- a) Calculate **k** for the reaction at 593 K. (1.3 x 10^{-3} min⁻¹)
- b) How many minutes will it take for a 5.00 mmol sample of SO₂Cl₂ to decompose to 3.50 mmol? (**271**)
- 5. Ethyl Acetate (CH₃CO₂C₂H₅) reacts with hydroxide ion in aqueous solution according to the reaction:

 $CH_3CO_2C_2H_5(aq) + OH^-(aq) \rightarrow CH_3COO^-(aq) + C_2H_5OH(aq)$

The reaction is known to be second order. An experiment was carried out and the following data were obtained:

Time (s)	M (of each reactant)	
0.0	0.01000	
60.0	0.00917	
120.0	0.00840	
180.0	0.00775	
240.0	0.00724	
300.0	0.00675	

- a) Determine the rate constant for the reaction. $(0.16 \text{ M}^{-1}\text{s}^{-1})$
- b) Determine the half-life for this reaction given the initial conditions above. (617 s)
- c) Calculate the time required for 75% of the initial ethyl acetate to react. (1851 s)