Kinetics Problems (calculator required)

1. The rate equation for the reaction: $2 \mathrm{NO}(g)+2 \mathrm{H}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$ is second order in $\mathrm{NO}(g)$ and first order in $\mathrm{H}_{2}(g)$.
a) Write an equation for the rate of appearance of $\mathrm{N}_{2}(g)$. (rate $\left.=\mathbf{k}[\mathbf{N O}]^{2}\left[\mathbf{H}_{2}\right]\right)$
b) If concentrations are expressed in $\mathrm{mol} /$ Litre, what units would the rate constant, \mathbf{k}, have?
($\mathbf{M}^{-2} \mathbf{s}^{-1}$)
c) Write an equation for the rate of disappearance of $\mathrm{NO}(g)$. Would \mathbf{k} in this equation have the same numerical value as \mathbf{k} in the equation of part (a)? (rate $=\mathbf{2 k}[\mathbf{N O}]^{2}\left[\mathbf{H}_{2}\right]$, yes)
2. For a reaction in which A and B combine to form C, the following data were obtained:

measured reaction rate $(\mathrm{mol} / \mathrm{L}-\mathrm{s})$	$\lceil\mathrm{A}](\mathrm{mol} / \mathrm{L})$	$[\mathrm{B}](\mathrm{mol} / \mathrm{L})$
0.0007	0.30	0.15
0.0028	0.60	0.30
0.0014	0.30	0.30

a) What is the rate law for the reaction? $($ rate $=\mathbf{k}[\mathbf{A}][\mathbf{B}])$
b) What is the numerical value of and units for the rate constant, k ? $\left(\mathbf{1 . 5 6} \times \mathbf{1 0}^{-\mathbf{2}} \mathbf{M}^{-1} \mathbf{s}^{\mathbf{- 1}}\right)$
3. The following data for the hydrolysis of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ in a solvent consisting of 10% water and 90% acetone were obtained at $25^{\circ} \mathrm{C}$:

$\mathrm{t}(\boldsymbol{h})$	$\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right], \mathrm{M}$
0.00	0.1039
3.15	0.0896
4.10	0.0859
6.20	0.0776
8.20	0.0701
10.0	0.0639
26.0	0.0270

a) Prepare a graph of concentration versus time, and use it to determine the initial reaction

b) Show graphically that the hydrolysis of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ follows first order kinetics.
c) Evaluate the rate constant at $25^{\circ} \mathrm{C}$. $\left(5.22 \times \mathbf{1 0}^{-\mathbf{2}} \mathbf{~ h r}^{-1}\right)$
d) How many hours would it take to hydrolyze 80% of a sample of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ at $25^{\circ} \mathrm{C}$? (31)
4. A study of the reaction

$$
\mathrm{SO}_{2} \mathrm{Cl}_{2}(g) \rightarrow \mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g)
$$

at 593 K shows that it is first order and that 10.0% of the $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ decomposes in 80.0 minutes.
a) Calculate \mathbf{k} for the reaction at $593 \mathrm{~K} .\left(\mathbf{1 . 3} \times \mathbf{1 0}^{-\mathbf{3}} \mathbf{m i n}^{\mathbf{- 1}}\right)$
b) How many minutes will it take for a 5.00 mmol sample of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ to decompose to 3.50 mmol ? (271)
5. Ethyl Acetate $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)$ reacts with hydroxide ion in aqueous solution according to the reaction:

$$
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q)
$$

The reaction is known to be second order. An experiment was carried out and the following data were obtained:

Time (\mathbf{s})	\mathbf{M} (of each reactant)
0.0	0.01000
60.0	0.00917
120.0	0.00840
180.0	0.00775
240.0	0.00724
300.0	0.00675

a) Determine the rate constant for the reaction. ($\mathbf{0 . 1 6} \mathbf{M}^{-1} \mathbf{s}^{-1}$)
b) Determine the half-life for this reaction given the initial conditions above. ($\mathbf{6 1 7} \mathbf{~ s}$)
c) Calculate the time required for 75% of the initial ethyl acetate to react. ($\mathbf{1 8 5 1} \mathbf{~ s}$)

