Solubility problems (calculator required)

1. A *Mohr Titration* is a procedure for finding out the amount of Cl⁻ in a solution by titrating it with aqueous AgNO₃:

 $\operatorname{Ag}^{+}(aq) + \operatorname{Cl}^{-}(aq) \rightarrow \operatorname{AgCl}(s)$

Calculate the Ag⁺ concentration at the equivalence point, that being the point in the titration where the number of moles of added silver is equal to the moles of Cl^- ion initially present. pK_{sp}(AgCl) = 9.7447 [**1.34 x 10⁻⁵ M**]

- Calculate the solubility (in g/100 mL) of Pb₃(AsO₄)₂ (pK_{sp} 35.3979) in:
 a) Water [2.94 x 10⁻⁶]
 - b) 0.10 M Pb(NO₃)₂ [2.84 x 10⁻¹⁵]
- 3. The pH (at 37°C, where $K_w = 2.4 \times 10^{-14}$) of a certain metal hydroxide of formula M(OH)₃ is 11.10. What is K_{sp} for the metal hydroxide at 37°C? [**2.78 x 10**⁻¹¹]
- 4. A solution has $[Cl^-] = 2.0$ M and $[Br^-] = 0.010$ M. AgNO₃ is slowly added to the solution. What will be the percent of the first ion remaining at the point of maximum separation of Br⁻ and Cl⁻? pK_{sp}(AgBr) = 12.30103 [55.6% of Br⁻ remains]