Thermodynamics Problems (calculator required)

1) Suppose that the following reaction was proposed for use in a battery:
$\mathrm{O}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$
a) Calculate ε^{0} for the battery at $200^{\circ} \mathrm{C}$, given that $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}(\mathrm{NO}(\mathrm{g}))=90.25 \mathrm{~kJ}$, $\mathrm{S}^{\circ}\left(\mathrm{N}_{2}(\mathrm{~g})\right)=191.5 \mathrm{~J} / \mathrm{K}, \mathrm{S}^{\circ}(\mathrm{NO}(\mathrm{g}))=210.7 \mathrm{~J} / \mathrm{K}$, and $\mathrm{S}^{\circ}\left(\mathrm{O}_{2}(\mathrm{~g})\right)=205.0 \mathrm{~J} / \mathrm{K} .[-0.4372 \mathrm{~V}]$
b) Calculate ε at $200^{\circ} \mathrm{C}$ if the pressure of the $\mathrm{O}_{2}, \mathrm{~N}_{2}$, and NO gases are $1.00,1.00$, and 2.00 bar respectively. [-0.4513 V]
2) For the reaction:
$\mathrm{I}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{I}_{2}(\mathrm{~g})$
a) Calculate $\Delta \mathrm{H}^{\mathrm{o}}, \Delta \mathrm{S}^{\mathrm{o}}$, and $\Delta \mathrm{G}^{0}$ at $25^{\circ} \mathrm{C}$ given that $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left(\mathrm{I}_{2}(\mathrm{~g})\right)=62.44 \mathrm{~kJ}$, $\mathrm{S}^{\circ}\left(\mathrm{I}_{2}(\mathrm{~s})\right)=116.1 \mathrm{~J} / \mathrm{K}$, and $\mathrm{S}^{\circ}\left(\mathrm{I}_{2}(\mathrm{~g})\right)=260.6 \mathrm{~J} / \mathrm{K} .\left[\Delta \mathrm{H}^{\circ}=\mathbf{6 2 . 4 4} \mathrm{kJ}, \Delta \mathrm{S}^{\circ}=\mathbf{1 4 4 . 5} \mathrm{J} / \mathrm{K}\right.$, $\left.\Delta G^{\circ}=19.4 \mathrm{~kJ}\right]$
b) At what temperature will the equilibrium pressure of iodine gas be 0.5000 bar ? $\left[\mathbf{1 4 2 . 4}{ }^{\circ} \mathbf{C}\right]$
3) For the reaction:
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
a) Calculate K_{p} at $50^{\circ} \mathrm{C}$ given that $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)=-285.8 \mathrm{~kJ}, \Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})\right)=-187.8 \mathrm{~kJ}$, $\mathrm{S}^{\circ}\left(\mathrm{O}_{2}(\mathrm{~g})\right)=205.0 \mathrm{~J} / \mathrm{K}, \mathrm{S}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})\right)=109.6 \mathrm{~J} / \mathrm{K}$, and $\mathrm{S}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)=69.91 \mathrm{~J} / \mathrm{K}\left[1.32 \times 10{ }^{19}\right]$
b) If the reaction has attained equilibrium at $50^{\circ} \mathrm{C}$, what should be the pressure of O_{2} in a bottle containing (initially) $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})$? [$\mathbf{1 . 7 5 \times 1 0} \mathbf{~ 1 0}$ bar]
4) For the reaction:
$\mathrm{A} \rightleftharpoons \mathrm{B}$
$\mathrm{K}_{\mathrm{eq}}=600,000$ at $25^{\circ} \mathrm{C}$ and 800,000 at $50^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ for the rection.
$\left[\Delta \mathrm{H}^{\circ}=9.2 \mathrm{~kJ}, \Delta \mathrm{~S}^{\circ}=141.5 \mathrm{~J} / \mathrm{K}\right]$
5) Calculate $K_{\text {sp }}$ for the reaction:

$$
\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})
$$

At $25^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$, given that $\mathrm{S}^{\circ}\left(\mathrm{OH}^{-}(\mathrm{aq})\right)=-10.75 \mathrm{~J} / \mathrm{K}, \mathrm{S}^{\circ}\left(\mathrm{Mg}^{+2}(\mathrm{aq})\right)=-138.1 \mathrm{~J} / \mathrm{K}$, $\mathrm{S}^{\circ}\left(\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})\right)=63.18 \mathrm{~J} / \mathrm{K}, \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{OH}^{-}(\mathrm{aq})\right)=-230.0 \mathrm{~kJ}, \Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left(\mathrm{Mg}^{+2}(\mathrm{aq})\right)=-466.9 \mathrm{~kJ}$, and $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left(\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})\right)=-924.5 \mathrm{~kJ}\left[\mathbf{6 . 0 8} \times 10^{-12}, 5.64 \times 10^{-\mathbf{1 2}}\right]$

