Thermodynamics Problems (calculator required)

1) Suppose that the following reaction was proposed for use in a battery:

$$O_2(g) + N_2(g)$$
 \longrightarrow $2NO(g)$

- a) Calculate ε° for the battery at 200°C, given that $\Delta H^{\circ}_{f}(NO(g)) = 90.25 \text{ kJ}$, $S^{\circ}(N_{2}(g)) = 191.5 \text{ J/K}, S^{\circ}(NO(g)) = 210.7 \text{ J/K}, and S^{\circ}(O_{2}(g)) = 205.0 \text{ J/K}. [-0.4372 \text{ V}]$
- b) Calculate ε at 200°C if the pressure of the O₂, N₂, and NO gases are 1.00, 1.00, and 2.00 bar respectively. [-0.4513 V]
- 2) For the reaction:

$$I_2(s) = I_2(g)$$

- a) Calculate ΔH° , ΔS° , and ΔG° at 25°C given that $\Delta H^{\circ}_{f}(I_{2}(g)) = 62.44$ kJ, $S^{\circ}(I_{2}(s)) = 116.1$ J/K, and $S^{\circ}(I_{2}(g)) = 260.6$ J/K. [$\Delta H^{\circ} = 62.44$ kJ, $\Delta S^{\circ} = 144.5$ J/K, $\Delta G^{\circ} = 19.4$ kJ]
- b) At what temperature will the equilibrium pressure of iodine gas be 0.5000 bar? [142.4°C]
- 3) For the reaction:

$$H_2O_2(1)$$
 \longrightarrow $H_2O(1) + \frac{1}{2}O_2(g)$

- a) Calculate K_p at 50°C given that $\Delta H^{\circ}_f(H_2O(l)) = -285.8$ kJ, $\Delta H^{\circ}_f(H_2O_2(l)) = -187.8$ kJ, $S^{\circ}(O_2(g)) = 205.0$ J/K, $S^{\circ}(H_2O_2(l)) = 109.6$ J/K, and $S^{\circ}(H_2O(l)) = 69.91$ J/K [1.32 x 10¹⁹]
- b) If the reaction has attained equilibrium at 50° C, what should be the pressure of O_2 in a bottle containing (initially) $H_2O_2(l)$? [1.75 x 10^{38} bar]
- 4) For the reaction:

$$A \longrightarrow B$$

 $K_{eq} = 600,000$ at 25°C and 800,000 at 50°C. Calculate ΔH^o and ΔS^o for the rection. [$\Delta H^o = 9.2 \text{ kJ}, \Delta S^o = 141.5 \text{ J/K}$]

5) Calculate K_{sp} for the reaction:

$$Mg(OH)_2(s) \quad \overline{\hspace{1cm}} \quad Mg^{2+}(aq) + 2OH^{\text{-}}(aq)$$

At 25°C and 50°C, given that S°(OH⁻(aq)) = -10.75 J/K, S°(Mg⁺²(aq)) = -138.1 J/K, S°(Mg(OH)₂(s)) = 63.18 J/K, Δ H°_f(OH⁻(aq)) = -230.0 kJ, Δ H°_f(Mg⁺²(aq)) = -466.9 kJ, and Δ H°_f(Mg(OH)₂(s)) = -924.5 kJ [**6.08** x **10**⁻¹², **5.64** x **10**⁻¹²]