THE DENSITY OF SOLIDS AND LIQUIDS

Name: \qquad Date: \qquad

Objective: (1) To become familiar with the various instruments used to weigh and measure objects
(2) To determine the densities of solid objects and an unknown liquid.

Procedure: As in CHEM 1105 lab manual, pages \qquad

Observations:

Data Part 1: Density of Solids

Table 1. Part 1: Density of Solids: Mass of Objects

Tray number:	Rock	Cylinder	Sphere
Mass of object and boat using top loading balance			
Mass of empty boat using top loading balance			
Mass of object using top loading balance			
Mass of object and boat using analytical balance			
Mass of empty boat using analytical balance			
Mass of object using analytical balance			

Table 2. Part 1: Density of Solids: Volume of Rock

Volume of Water in Cylinder Before Adding Rock (mL)	Volume of Water in Cylinder After Adding Rock (mL)	So, Volume of water displaced (mL)	Therefore, Volume of Rock $\left(\mathrm{cm}^{3}\right)$

Table 3. Part 1: Density of Solids: Volume of Regular Objects

	Cylinder	Dimension	Sphere	Dimension
Dimension 1 by ruler				
Dimension 1 by caliper				
Dimension 2 by ruler				
Dimension 2 by caliper				
Dimension 3 by ruler				
Dimension 3 by caliper				

Data Part 2: Density of Liquids

Table 4. Part 2: Mass of Liquid

Mass of $\mathbf{5 0} \mathbf{m L}$ Erlenmeyer flask and stopper (g)	
Mass of flask, stopper, and first 15 mL aliquot (g)	
Mass of first $\mathbf{1 5 . 0 0} \mathbf{~ m L}$ aliquot_(g)	
Mass of flask, stopper, first and second 15 mL aliquots (g)	
Mass of second $\mathbf{1 5 . 0 0} \mathbf{~ m L}$ aliquot (g)	

Calculations:

Show all your calculations for Part 1 directly in the tables below.
Table 5. Part I: Density of Solids: Volume of Regular Objects

Cylinder	volume by ruler
	volume by caliper
	volume by ruler
	volume by caliper

Table 6. Part I: Density of Regular Objects

Cylinder	density using top-loading balance and ruler
	density using analytical balance and ruler
	density using analytical balance and caliper
	density using top-loading balance and ruler
	density using analytical balance and ruler
	density using top-loading balance and caliper
	density using analytical balance and caliper

Table 7. Part I: Density of Irregular Object-Rock
Density of rock using top-loading balance

Density of rock using analytical balance

Table 8. Part 2: Density of Liquids

Show all your calculations for Part 2 (Density of liquid) below. For which calculations to include see the "Treatment of Data" section in the manual.

Conclusion:

Table 9.

Tray number:_	Cylinder	Sphere	Rock
Calculated density from the most precise instruments			
Calculated density from the most precise instruments			
Calculated density of liquid			

Questions

1. Which instruments used to determine the density of regularly shaped objects are the most accurate and why?
2. Why was it necessary to put the stopper on the Erlenmeyer flask when it had solution in it?
3. A graduated cylinder, when filled to the 40.00 mL mark with water (density $1.00 \mathrm{~g} / \mathrm{mL}$) and capped with a stopper, had a mass of 352.05 grams. The same cylinder had a rock of mass 37.40 grams placed into it and was re-filled to the 40.00 mL mark with water. The same cylinder, when capped (with the same stopper) now had a mass of 383.95 grams. What is the density of the rock?
