DETERMINATION OF ABSOLUTE ZERO

Date: \qquad Name: \qquad Partner:

Objective: To determine_Absolute Zero

Procedure: As in CHEM 1105 lab manual, pages \qquad .

Observations:

Data:

Table 2: Height of Column of Air and Temperature

Reading Number	Height of Column of Air $(\mathbf{m m})$	Water Temperature $\left({ }^{\circ} \mathrm{C}\right)$
1		
2		
3		
4		
5		
6		
7		
9		
10		
11		
12		

Calculations:

1) Attach a graph made in Graphical Analysis or Excel of Column Height (mm) versus Temperature $\left({ }^{\circ} \mathrm{C}\right)$.
2) The temperature that corresponds to absolute zero will be the one for which the column length is zero. Determine the slope and y-intercept of the line and using the equation $y=m x+b$ determine the value of Absolute Zero.
3) Show all your calculations for the slope and y-intercept when determining Absolute Zero.

Conclusion:

Table 3: Absolute Zero Results

	Slope	Y-Intercept	Absolute Zero
Value determined			
Units			

Discussion:

Write a short paragraph discussing your results. Compare your experimental data to the accepted value, (-273.15 ${ }^{\circ} \mathrm{C}$.)

Questions:

1. List three sources of error (not mistakes in technique) and the effect each would have on the calculated value for absolute zero. (e.g. not having a uniform bore in the capillary tube, etc.)
2. Calculate the \% error of your experimentally determined value of absolute zero and the accepted value.
