1. (1) $\mathrm{Na}(s)+\frac{1}{2} \mathrm{Cl}_{2}(g) \rightarrow \mathrm{Na}(g)+\mathrm{Cl}(g) ; \Delta H=+230 \mathrm{~kJ}$
(2) $\quad \mathrm{Na}(g)+\mathrm{Cl}(g) \rightarrow \mathrm{Na}^{+}(g)+\mathrm{Cl}^{-}(g) ; \Delta H=+147 \mathrm{~kJ}$
(3) $\quad \mathrm{Na}(s)+\frac{1}{2} \mathrm{Cl}_{2}(g) \rightarrow \mathrm{NaCl}(s) ; \Delta H=-411 \mathrm{~kJ}$
need $\mathrm{Na}^{+}(g)$ and $\mathrm{Cl}^{-}(g)$ on the LHS; reverse (2) \rightarrow (4)
need $\mathrm{NaCl}(s)$ on the RHS; use (3) as is
need $\mathrm{Na}(g)$ and $\mathrm{Cl}(g)$ on the LHS to cancel $\mathrm{Na}(g)$ and $\mathrm{Cl}(g)$ on the RHS in (4); reverse (1) \rightarrow (5)
(4) $\quad \mathrm{Na}^{+}(g)+\mathrm{Cl}^{-}(g) \rightarrow \mathrm{Na}(g)+\mathrm{Cl}(g) ; \Delta H=-147 \mathrm{~kJ}$
(3) $\quad \mathrm{Na}(s)+{ }_{2}^{1} \mathrm{Cl}_{2}(g) \rightarrow \mathrm{NaCl}(s) ; \Delta H=-411 \mathrm{~kJ}$
(5) $\quad \mathrm{Na}(g)+\mathrm{Cl}(g) \rightarrow \mathrm{Na}(s)+{ }_{\frac{1}{2}} \mathrm{Cl}_{2}(g) ; \Delta H=-230 \mathrm{~kJ}$
adding (4)+(3)+(5) gives $\mathrm{Na}^{+}(g)+\mathrm{Cl}^{-}(g) \rightarrow \mathrm{NaCl}(s) ; \Delta H=-788 \mathrm{~kJ}$
2. $\Delta H_{\mathrm{f}}{ }^{0}$ of $\mathrm{VCl}_{3}(s)$ is ΔH for $\mathrm{V}(s)+1.5 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{VCl}_{3}(s)$
(1) $\quad \mathrm{V}(s)+2 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{VCl}_{4}(l) ; \Delta H=-569.4 \mathrm{~kJ}$
(2) $\quad \mathrm{VCl}_{3}(s) \rightarrow \mathrm{VCl}_{2}(s)+\frac{1}{2} \mathrm{Cl}_{2}(g) ; \Delta H=+128.9 \mathrm{~kJ}$
(3) $\quad 2 \mathrm{VCl}_{3}(s) \rightarrow \mathrm{VCl}_{2}(s)+\mathrm{VCl}_{4}(l) ; \Delta H=+140.2 \mathrm{~kJ}$
need $\mathrm{V}(s)$ on the LHS; use (1) as is
need $\mathrm{VCl}_{4}(l)$ on the LHS to cancel $\mathrm{VCl}_{4}(l)$ on the RHS in (1); reverse (3) $\rightarrow(4)$
need $\mathrm{VCl}_{2}(s)$ on the RHS to cancel $\mathrm{VCl}_{2}(s)$ on the LHS in (4); use (2) as is
(1) $\quad \mathrm{V}(s)+2 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{VCl}_{4}(l) ; \Delta H=-569.4 \mathrm{~kJ}$
(4) $\quad \mathrm{VCl}_{2}(s)+\mathrm{VCl}_{4}(l) \rightarrow \quad 2 \mathrm{VCl}_{3}(s) ; \Delta H=-140.2 \mathrm{~kJ}$
(2) $\quad \mathrm{VCl}_{3}(s) \rightarrow \mathrm{VCl}_{2}(s)+\frac{1}{2} \mathrm{Cl}_{2}(g) ; \Delta H=+128.9 \mathrm{~kJ}$
adding (1)+(4)+(2) gives $\mathrm{V}(s)+1.5 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{VCl}_{3}(s) ; \Delta H=-580.7 \mathrm{~kJ}$
3. (1) $2 \mathrm{Al}_{2} \mathrm{O}_{3}(s) \rightarrow 4 \mathrm{Al}(s)+3 \mathrm{O}_{2}(g) ; \Delta H=+3340 \mathrm{~kJ}$
(a) $\Delta H_{\mathrm{f}}^{0}$ for $\mathrm{Al}_{2} \mathrm{O}_{3}(s)$ is ΔH for
(2) $\quad 2 \mathrm{Al}(s)+1.5 \mathrm{O}_{2}(g) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(s)$
but (2) is (1) divided by 2 and reversed
hence $\Delta H_{\mathrm{f}}^{0}$ for $\mathrm{Al}_{2} \mathrm{O}_{3}(s)$ is $-3340 \mathrm{~kJ} / 2=-1670 \mathrm{~kJ}$
(b) $\quad 10.0 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}{102 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}} \times \frac{3340 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}=164 \mathrm{~kJ}$
4. $\Delta \mathrm{T}=(25.00-21.18)^{\circ} \mathrm{C}=3.82^{\circ} \mathrm{C}$
$\mathrm{Q}=$ heat lost by 50.0 g water + heat lost by calorimeter

$$
\left(50.0 \mathrm{~g} \mathrm{x} 4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \times 3.82^{\circ} \mathrm{C}\right)+\left(75.0 \mathrm{~J} /{ }^{\circ} \mathrm{C} \times 3.92^{\circ} \mathrm{C}\right)=1085 \mathrm{~J}
$$

since the temperature decreased, ΔH for the process
$\mathrm{KClO}_{3}(s) \rightarrow \mathrm{K}^{+}(a q)+\mathrm{ClO}_{3}^{-}(a q)$ is $+\mathrm{Q} / \mathrm{mol} \mathrm{KClO}_{3}$
$\mathrm{Q} / \mathrm{mol}_{\mathrm{KClO}}^{3} 3=\frac{1085 \mathrm{~J}}{3.17 \mathrm{~g}} \times \frac{122.6 \mathrm{~g}}{1 \mathrm{~mol}}=42.0 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H=+42.0 \mathrm{~kJ}$
5. heat given off $=2.48 \mathrm{~g} \mathrm{Cux} \frac{128.4 \mathrm{~kJ}}{63.55 \mathrm{~g} \mathrm{Cu}}=5.01 \mathrm{~kJ}$

$$
\begin{aligned}
& \mathrm{Q}= 5.01 \times 10^{3} \mathrm{~J}=\left(125 \mathrm{~g} \mathrm{x} 4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \times \Delta \mathrm{T}\right)+\left(75.0 \mathrm{~J} /{ }^{\circ} \mathrm{C} \times \Delta \mathrm{T}\right) \\
& 5.01 \times 10^{3} \mathrm{~J}=(522.5+75.0) \Delta \mathrm{T}=597.5 \Delta \mathrm{~T} \\
& \Delta \mathrm{~T}=\frac{5.01 \times 10^{3}}{597.5}=8.38^{\circ} \mathrm{C}
\end{aligned}
$$

since the reaction is exothermic, $\mathrm{T}_{\text {final }}=(22.50+8.38)=30.88^{\circ} \mathrm{C}$
6. $\Delta \mathrm{T}=(25.54-24.00)^{\circ} \mathrm{C}=1.54^{\circ} \mathrm{C}$. Total volume $=(155+260) \mathrm{mL}=415 \mathrm{~mL}$

Assuming density $=1.00 \mathrm{~g} / \mathrm{mL}$, total mass $=415 \mathrm{~g}$
$\mathrm{Q}=\left(415 \mathrm{~g} \mathrm{x} 4.184 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C} \times 1.54^{\circ} \mathrm{C}\right)+\left(40.4 \mathrm{~J} /{ }^{\circ} \mathrm{C} \times 1.54^{\circ} \mathrm{C}\right)$
$=2736 \mathrm{~J}=2.736 \mathrm{~kJ}$
$\mathrm{mol} \mathrm{H}_{3} \mathrm{PO}_{4}=0.155 \mathrm{~L} \times 0.1250 \mathrm{M}=0.01938$
$\mathrm{mol} \mathrm{Sr}(\mathrm{OH})_{2}=0.260 \mathrm{~L} \times 0.1000 \mathrm{M}=0.02600$
$0.01938 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}$ needs $0.01938 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4} \times \frac{3 \mathrm{~mol} \mathrm{Sr}(\mathrm{OH})_{2}}{2 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}$ $=0.02907 \mathrm{~mol} \mathrm{Sr}(\mathrm{OH})_{2}$
Therefore, $\mathrm{Sr}(\mathrm{OH})_{2}$ is the limiting reactant

$$
\frac{\mathrm{Q}}{\mathrm{~mol} \mathrm{Sr}(\mathrm{OH})_{2}}=\frac{2.736 \mathrm{~kJ}}{0.0260}=105.2 \mathrm{~kJ}
$$

$\Delta H=-\mathrm{Q}$ for 3 moles of $\operatorname{Sr}(\mathrm{OH})_{2} ; \Delta H=-(105.2 \times 3)=-316 \mathrm{~kJ}$
7. $\Delta \mathrm{T}=(25.64-23.40)^{\circ} \mathrm{C}=2.24^{\circ} \mathrm{C}$
heat gained on $6.00 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$ increasing in temperature by $2.24^{\circ} \mathrm{C}$ $=6.00 \times 10^{3} \mathrm{~g} \mathrm{x} 4.184 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C} \times 2.24^{\circ} \mathrm{C}=5.623 \times 10^{4} \mathrm{~J}=56.23 \mathrm{~kJ}$
heat gained by calorimeter increasing in temperature by $2.24^{\circ} \mathrm{C}$
$=3.180 \mathrm{~kJ} /{ }^{\circ} \mathrm{C} \times 2.24^{\circ} \mathrm{C}=7.12 \mathrm{~kJ}$
total heat gained $=63.35 \mathrm{~kJ}=$ heat given off in the reaction
$\mathrm{Q} / \mathrm{mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}=\frac{63.35 \mathrm{~kJ}}{3.85 \mathrm{~g}} \times \frac{342.2 \mathrm{~g}}{1 \mathrm{~mol}}=5.631 \times 10^{3} \mathrm{~kJ}$
since the reaction gave off heat, $\Delta H=-5.631 \times 10^{3} \mathrm{~kJ}$ and the reaction is

$$
\begin{aligned}
& \quad \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+12 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O} ; \Delta H=-5631 \mathrm{~kJ} \\
& \Delta H=\Sigma \Delta H_{\mathrm{f}}^{0} \text { products }-\Sigma \Delta H_{\mathrm{f}}^{0} \text { reactants } \\
& -5631=[12(-393.5)+11(-285.8)]-\Delta H_{\mathrm{f}}^{0} \text { sucrose } \\
& \Delta H_{\mathrm{f} \text { sucrose }}^{0}=-4722+(-3144)+5631=-2235 \mathrm{~kJ}
\end{aligned}
$$

8. let $\Delta \mathrm{T}=$ change in temperature
heat gained by 5.00 kg water increasing in temperature by $\Delta \mathrm{T}$
$=5.00 \times 10^{3} \mathrm{~g} \mathrm{x} 4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \times \Delta \mathrm{T}=20.9 \Delta \mathrm{~T} \times 10^{3} \mathrm{~J}=20.9 \Delta \mathrm{~T} \mathrm{~kJ}$ heat gained by calorimeter increasing in temperature by $\Delta \mathrm{T}$ $=3.612 \mathrm{~kJ} /{ }^{\circ} \mathrm{C} \mathrm{x} \Delta \mathrm{T}=3.612 \Delta \mathrm{~T} \mathrm{~kJ}$ since heat given off $=69.3 \mathrm{~kJ},(20.9+3.612) \Delta \mathrm{T}=69.3$ $24.51 \Delta \mathrm{~T}=69.3 \quad \Delta \mathrm{~T}=69.3 / 24.51=2.83^{\circ} \mathrm{C}$
Final temperature $=(23.00+2.83)^{\circ} \mathrm{C}=25.83^{\circ} \mathrm{C}$
9. $\Delta H_{\mathrm{f}} \mathrm{HI}(g)=25.9 \mathrm{~kJ} / \mathrm{mole}$
(1) $\quad \frac{1}{2} \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{I}_{2}(s) \rightarrow \mathrm{HI}(g) ; \Delta H=25.9 \mathrm{~kJ}$
ΔH of sublimation of $\mathrm{I}_{2}=62.4 \mathrm{~kJ} / \mathrm{mole}$
(2)
(3)
$\mathrm{I}_{2}(s) \rightarrow \mathrm{I}_{2}(g) ; \Delta H=62.4 \mathrm{~kJ}$
$\mathrm{I}_{2}(g) \rightarrow \mathrm{I}_{2}(s) ; \quad \Delta H=-62.4 \mathrm{~kJ}$
(4) $\quad{ }_{2}^{1} \mathrm{I}_{2}(g) \rightarrow{ }_{2}^{1} \mathrm{I}_{2}(s) ; \Delta H=-31.2 \mathrm{~kJ}$
(1) $+(4)$ gives:
${ }_{2}^{1} \mathrm{H}_{2}(g)+{ }_{2}^{1} \mathrm{I}_{2}(g) \rightarrow \mathrm{HI}(g) ; \quad \Delta H=(25.9-31.2) \mathrm{kJ}=-5.3 \mathrm{~kJ}$
10. Let final temperature $=\mathrm{T}$

Heat gained on melting $=125 \mathrm{~g} \mathrm{x} \frac{1 \mathrm{~mol}}{60.0 \mathrm{~g}} \times \frac{11.7 \mathrm{~kJ}}{1 \mathrm{~mol}}=24.38 \mathrm{~kJ}$
Heat gained on warming from $16.7^{\circ} \mathrm{C}$ to T :

$$
\begin{aligned}
& =125 \mathrm{~g} \mathrm{x} \frac{1 \mathrm{~mol}}{60.0 \mathrm{~g}} \times \frac{0.125 \mathrm{~kJ}}{{ }^{\circ} \mathrm{C} \cdot \mathrm{~mol}} \times(\mathrm{T}-16.7)^{\circ} \mathrm{C} \\
& =(0.2604 \mathrm{~T}-4.349) \mathrm{kJ}
\end{aligned}
$$

Heat lost on cooling from $33.8^{\circ} \mathrm{C}$ to T :

$$
\begin{aligned}
& =755 \mathrm{~g} \mathrm{x} \frac{1 \mathrm{~mol}}{60.0 \mathrm{~g}} \times \frac{0.125 \mathrm{~kJ}}{{ }^{\circ} \mathrm{C} \cdot \mathrm{~mol}} \times(33.8-\mathrm{T})^{\circ} \mathrm{C} \\
& =(53.16-1.573 \mathrm{~T}) \mathrm{kJ}
\end{aligned}
$$

Heat gained $=$ heat lost

$$
\begin{array}{r}
0.2604 \mathrm{~T}-4.349+24.38=53.16-1.573 \mathrm{~T} \\
(0.26041 .573) \mathrm{T}=53.16+4.349-24.38 \\
1.833 \mathrm{~T}=33.129 \\
\mathrm{~T}=18.1^{\circ} \mathrm{C}
\end{array}
$$

CHECK:

$24.38+\left[\frac{125}{60} \times 0.125 \times(18.1-16.7)\right]=\frac{775}{60} \times 0.125 \times(33.8-18.1)$

$$
24.7=24.7
$$

11. (a) From Appendix C: $\Delta H_{\mathrm{f}}{ }^{0} \mathrm{Al}_{2} \mathrm{O}_{3}=-1676 \mathrm{~kJ} ; \Delta H_{\mathrm{f}}{ }^{0} \mathrm{Fe}_{2} \mathrm{O}_{3}=-825.5 \mathrm{~kJ}$
for the reaction, $\Delta H=\Delta H_{\mathrm{f}}^{0} \mathrm{Al}_{2} \mathrm{O}_{3}-\Delta H_{\mathrm{f}}^{0} \mathrm{Fe}_{2} \mathrm{O}_{3}=[-1676-(-825.5)] \mathrm{kJ}$
$=-850.5 \mathrm{~kJ}$
(b) For the reaction as written, $1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}(102 \mathrm{~g})$ and $2 \mathrm{~mol} \mathrm{Fe}(111.7 \mathrm{~g})$ are formed when 850.5 kJ of heat are evolved. Since these are the only materials present, Q (the heat evolved, 850.5 kJ) must be equal to the sum of (mass x specific heat $\mathrm{x} \Delta \mathrm{T}$) for the $\mathrm{Al}_{2} \mathrm{O}_{3}$ and Fe .
$850.5 \times 10^{3} \mathrm{~J}=102 \mathrm{~g} \times 0.79 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \times \Delta \mathrm{T}+111.7 \mathrm{~g} \mathrm{x} 0.45 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \times \Delta \mathrm{T}$
$850.5 \times 10^{3}=(80.58+50.27) \Delta \mathrm{T}=130.9 \Delta \mathrm{~T}$
$\Delta \mathrm{T}=850.5 \times 10^{3} / 130.9=6.5 \times 10^{30} \mathrm{C}$
Final temperature $=\left(25+6.5 \times 10^{3}\right)^{\circ} \mathrm{C}=6.5 \times 10^{3{ }^{\circ}} \mathrm{C}$
(only approximate; see below)
(c) The final temperature is well above the melting point of iron and hence we would expect the iron to melt. However, we should calculate if, after reaching $1535^{\circ} \mathrm{C}$ (the mp of Fe), there is enough heat ($270 \mathrm{~J} / \mathrm{g}$) to melt the Fe .
let $\mathrm{T}_{\text {final }}=1535^{\circ} \mathrm{C}$ then $\Delta \mathrm{T}=(1535-25)^{\circ} \mathrm{C}=1510^{\circ} \mathrm{C}$
$\mathrm{Q}=(102 \times 0.79 \times 1510)+(111.7 \times 0.45 \times 1510)=200 \times 10^{3} \mathrm{~J}$
hence there are (850.5-200) $\times 10^{3} \mathrm{~J}=650.5 \times 10^{3} \mathrm{~J}$ still available to melt the Fe .
heat to melt $111.7 \mathrm{~g} \mathrm{Fe}=111.7 \mathrm{~g} \times 270 \mathrm{~J} / \mathrm{g}=30 \times 10^{3} \mathrm{~J}$
Therefore there is enough heat to melt the iron and $(650.5-30) \times 10^{3} \mathrm{~J}\left(620.5 \times 10^{3}\right) \mathrm{J}$ are left.

We can also calculate if the $\mathrm{Al}_{2} \mathrm{O}_{3}$ would be melted.
mp of $\mathrm{Al}_{2} \mathrm{O}_{3}=2072^{\circ} \mathrm{C}$; heat of fusion of $\mathrm{Al}_{2} \mathrm{O}_{3}=1071 \mathrm{~J} / \mathrm{g}$
Assuming that molten Fe has the same specific heat as solid Fe , we can calculate the amount of additional heat needed to reach the melting point of $\mathrm{Al}_{2} \mathrm{O}_{3}$.
$\Delta \mathrm{T}=2072-1535=537^{\circ} \mathrm{C}$
$\mathrm{Q}=[(102 \times 0.79 \times 537)+(111.7 \times 0.45 \times 537)] \mathrm{J}$
$=70 \times 10^{3} \mathrm{~J}$
Hence, after reaching $2072^{\circ} \mathrm{C}$, $(620-70) \times 10^{3}=550 \times 10^{3} \mathrm{~J}$ are left.
Heat to melt the 102 g of $\mathrm{Al}_{2} \mathrm{O}_{3}=102 \mathrm{~g} \times 1071 \mathrm{~J} / \mathrm{g}=109 \times 10^{3} \mathrm{~J}$
Heat left $=(550-109) \times 10^{3} \mathrm{~J}=441 \times 10^{3} \mathrm{~J}$
Again, assuming molten $\mathrm{Al}_{2} \mathrm{O}_{3}$ has the same specific heat as the liquid, we can calculate the approximate final temperature.
$441 \times 10^{3} \mathrm{~J}=(102 \times 0.79 \times \Delta \mathrm{T})+(111.7 \times 0.45 \times \Delta \mathrm{T})$
$\Delta \mathrm{T}=441000 / 130.9=3370^{\circ} \mathrm{C}$
Final temperature $=3370+2072=5442^{\circ} \mathrm{C}\left(5.4 \times 10^{3}{ }^{\circ} \mathrm{C}\right)$
When this reaction used to be used for welding rails, it would have been done in the open and much of the heat would have been lost and maybe the $\mathrm{Al}_{2} \mathrm{O}_{3}$ would not have melted.

