CHEM 1105

ANSWERS TO PROBLEM SET 4

- 1. $\operatorname{Na}(s) + \frac{1}{2}\operatorname{Cl}_2(g) \rightarrow \operatorname{Na}(g) + \operatorname{Cl}(g); \Delta H = +230 \text{ kJ}$ (1)(2) $Na(g) + Cl(g) \rightarrow Na^+(g) + Cl^-(g); \Delta H = +147 \text{ kJ}$ Na(s) + $\frac{1}{2}$ Cl₂(g) \rightarrow NaCl(s); $\Delta H = -411$ kJ (3) need Na⁺(g) and Cl⁻(g) on the LHS; reverse (2) \rightarrow (4) need NaCl(s) on the RHS: use (3) as is need Na(g) and Cl(g) on the LHS to cancel Na(g) and Cl(g) on the RHS in (4); reverse (1) \rightarrow (5) $Na^+(g) + Cl^-(g) \rightarrow Na(g) + Cl(g); \Delta H = -147 \text{ kJ}$ (4) $Na(s) + \frac{1}{2}Cl_2(g) \rightarrow NaCl(s); \Delta H = -411 \text{ kJ}$ (3) $Na(g) + Cl(g) \rightarrow Na(s) + \frac{1}{2}Cl_2(g); \Delta H = -230 \text{ kJ}$ (5) adding (4)+(3)+(5) gives $\operatorname{Na}^+(g) + \operatorname{Cl}^-(g) \rightarrow \operatorname{NaCl}(s); \Delta H = -788 \text{ kJ}$ 2. $\Delta H_{\rm f}^0$ of VCl₃(s) is ΔH for V(s) + 1.5Cl₂(g) \rightarrow VCl₃(s)
 - (1) $V(s) + 2Cl_2(g) \rightarrow VCl_4(l); \Delta H = -569.4 \text{ kJ}$ (2) $VCl_3(s) \rightarrow VCl_2(s) + \frac{1}{2}Cl_2(g); \Delta H = +128.9 \text{ kJ}$ (3) $2VCl_3(s) \rightarrow VCl_2(s) + VCl_4(l); \Delta H = +140.2 \text{ kJ}$

need V(s) on the LHS; use (1) as is need VCl₄(l) on the LHS to cancel VCl₄(l) on the RHS in (1); reverse (3) \rightarrow (4) need VCl₂(s) on the RHS to cancel VCl₂(s) on the LHS in (4); use (2) as is (1) V(s) + 2Cl₂(g) \rightarrow VCl₄(l); $\Delta H = -569.4$ kJ (4) VCl (s) + VCl (l) \rightarrow 2VCl (s): $\Delta H = -140.2$ kJ

(4)
$$\operatorname{VCl}_2(s) + \operatorname{VCl}_4(l) \rightarrow 2\operatorname{VCl}_3(s); \Delta H = -140.2 \text{ kJ}$$

(2) $\operatorname{VCl}_3(s) \to \operatorname{VCl}_2(s) + \frac{1}{2}\operatorname{Cl}_2(g); \Delta H = +128.9 \text{ kJ}$

adding (1)+(4)+(2) gives $V(s) + 1.5Cl_2(g) \rightarrow VCl_3(s); \Delta H = -580.7 \text{ kJ}$

3.

(1) $2Al_2O_3(s) \rightarrow 4Al(s) + 3O_2(g); \Delta H = +3340 \text{ kJ}$ (a) ΔH_f^0 for $Al_2O_3(s)$ is ΔH for

(2) $2Al(s) + 1.5O_2(g) \rightarrow Al_2O_3(s)$ but (2) is (1) divided by 2 and reversed hence ΔH_f^0 for $Al_2O_3(s)$ is -3340 kJ/2 = -1670 kJ

(b)
$$10.0 \text{ g Al}_2\text{O}_3 \text{ x } \frac{1 \text{ mol Al}_2\text{O}_3}{102 \text{ g Al}_2\text{O}_3} \text{ x } \frac{3340 \text{ kJ}}{2 \text{ mol Al}_2\text{O}_3} = 164 \text{ kJ}$$

4.
$$\Delta T = (25.00 - 21.18)^{\circ}C = 3.82^{\circ}C$$

Q = heat lost by 50.0 g water + heat lost by calorimeter (50.0 g x 4.18 J/g·°C x 3.82°C) + (75.0 J/°C x 3.92°C) = 1085 J since the temperature decreased, ΔH for the process KClO₃(s) → K⁺(aq) + ClO₃⁻(aq) is + Q/mol KClO₃

Q/mol KClO₃ =
$$\frac{1085 \text{ J}}{3.17 \text{ g}} \times \frac{122.6 \text{ g}}{1 \text{ mol}} = 42.0 \text{ kJ/mol}$$

 $\Delta H = +42.0 \text{ kJ}$

5. heat given off = 2.48 g Cu x $\frac{128.4 \text{ kJ}}{63.55 \text{ g Cu}}$ = 5.01 kJ

$$\begin{split} Q &= 5.01 \ x \ 10^3 \ \text{J} = (125 \ \text{g} \ x \ 4.18 \ \text{J/g} \cdot ^\circ \text{C} \ x \ \Delta \text{T}) + (75.0 \ \text{J/}^\circ \text{C} \ x \ \Delta \text{T}) \\ & 5.01 \ x \ 10^3 \ \text{J} = (522.5 + 75.0) \ \Delta \text{T} = 597.5 \ \Delta \text{T} \end{split}$$

$$\Delta T = \frac{5.01 \text{ x } 10^3}{597.5} = 8.38^{\circ} \text{C}$$

since the reaction is exothermic, $T_{\text{final}} = (22.50 + 8.38) = 30.88^{\circ}\text{C}$

6. $\Delta T = (25.54 - 24.00)^{\circ}C = 1.54^{\circ}C$. Total volume = (155 + 260) mL = 415 mL Assuming density = 1.00 g/mL, total mass = 415 g $Q = (415 \text{ g x } 4.184 \text{ J/g} \cdot ^{\circ}C \text{ x } 1.54^{\circ}C) + (40.4 \text{ J/}^{\circ}C \text{ x } 1.54^{\circ}C)$

= 2736 J = 2.736 kJmol H₃PO₄ = 0.155 L x 0.1250 M = 0.01938 mol Sr(OH)₂ = 0.260 L x 0.1000 M = 0.02600

0.01938 mol H₃PO₄ needs 0.01938 mol H₃PO₄ x $\frac{3 \text{ mol Sr(OH)}_2}{2 \text{ mol H}_3\text{PO}_4}$

= $0.02907 \text{ mol } \text{Sr}(\text{OH})_2$ Therefore, $\text{Sr}(\text{OH})_2$ is the limiting reactant

 $\frac{Q}{\text{mol Sr(OH)}_2} = \frac{2.736 \text{ kJ}}{0.0260} = 105.2 \text{ kJ}$

 $\Delta H = -Q$ for 3 moles of Sr(OH)₂; $\Delta H = -(105.2 \text{ x } 3) = -316 \text{ kJ}$

7. $\Delta T = (25.64 - 23.40)^{\circ}C = 2.24^{\circ}C$

heat gained on 6.00 kg H₂O increasing in temperature by 2.24°C = 6.00×10^3 g x 4.184 J/g·°C x 2.24°C = 5.623×10^4 J = 56.23 kJ heat gained by calorimeter increasing in temperature by 2.24°C = 3.180 kJ/°C x 2.24°C = 7.12 kJ total heat gained = 63.35 kJ = heat given off in the reaction

$$Q/mol C_{12}H_{22}O_{11} = \frac{63.35 \text{ kJ}}{3.85 \text{ g}} \times \frac{342.2 \text{ g}}{1 \text{ mol}} = 5.631 \times 10^3 \text{ kJ}$$

since the reaction gave off heat, $\Delta H = -5.631 \times 10^3 \text{ kJ}$ and the reaction is $C_{12}H_{22}O_{11} + 12O_2 \rightarrow 12CO_2 + 11H_2O$; $\Delta H = -5631 \text{ kJ}$ $\Delta H = \Sigma \Delta H_f^0_{\text{products}} - \Sigma \Delta H_f^0_{\text{reactants}}$ $-5631 = [12(-393.5) + 11(-285.8)] - \Delta H_f^0_{\text{sucrose}}$ $\Delta H_f^0_{\text{sucrose}} = -4722 + (-3144) + 5631 = -2235 \text{ kJ}$ 8. let ΔT = change in temperature heat gained by 5.00 kg water increasing in temperature by ΔT = 5.00 x 10³ g x 4.18 J/g·°C x ΔT = 20.9 ΔT x 10³ J = 20.9 ΔT kJ heat gained by calorimeter increasing in temperature by ΔT = 3.612 kJ/°C x ΔT = 3.612 ΔT kJ since heat given off = 69.3 kJ, (20.9 + 3.612) ΔT = 69.3 24.51 ΔT = 69.3 ΔT = 69.3/24.51 = 2.83°C Final temperature = (23.00 + 2.83)°C = 25.83°C

9.
$$\Delta H_{\rm f} \operatorname{HI}(g) = 25.9 \text{ kJ/mole}$$
(1) $\frac{1}{2} \operatorname{H}_2(g) + \frac{1}{2} \operatorname{I}_2(s) \rightarrow \operatorname{HI}(g); \quad \Delta H = 25.9 \text{ kJ}$

$$\Delta H \text{ of sublimation of } \operatorname{I}_2 = 62.4 \text{ kJ/mole}$$
(2) $\operatorname{I}_2(s) \rightarrow \operatorname{I}_2(g); \quad \Delta H = 62.4 \text{ kJ}$
(3) $\operatorname{I}_2(g) \rightarrow \operatorname{I}_2(s); \quad \Delta H = -62.4 \text{ kJ}$
(4) $\frac{1}{2} \operatorname{I}_2(g) \rightarrow \frac{1}{2} \operatorname{I}_2(s); \quad \Delta H = -31.2 \text{ kJ}$
(1) + (4) gives: $\frac{1}{2} \operatorname{H}_2(g) + \frac{1}{2} \operatorname{I}_2(g) \rightarrow \operatorname{HI}(g); \quad \Delta H = (25.9 - 31.2) \text{ kJ} = -5.3 \text{ kJ}$

10. Let final temperature = T

Heat gained on melting = 125 g x $\frac{1 \text{ mol}}{60.0 \text{ g}}$ x $\frac{11.7 \text{ kJ}}{1 \text{ mol}}$ = 24.38 kJ

Heat gained on warming from 16.7°C to T:

$$= 125 \text{ g x} \frac{1 \text{ mol}}{60.0 \text{ g}} \text{ x} \frac{0.125 \text{ kJ}}{^{\circ}\text{C} \cdot \text{mol}} \text{ x} (\text{T} - 16.7)^{\circ}\text{C}$$

$$= (0.2604 \text{ T} - 4.349) \text{ kJ}$$

Heat lost on cooling from 33.8°C to T:

$$= 755 \text{ g x} \frac{1 \text{ mol}}{60.0 \text{ g}} \text{ x} \frac{0.125 \text{ kJ}}{^{\circ}\text{C} \cdot \text{mol}} \text{ x} (33.8 - \text{T})^{\circ}\text{C}$$

Heat gained = heat lost 0.2604 T - 4.349 + 24.38 = 53.16 - 1.573 T $(0.2604 \ 1.573)\text{T} = 53.16 + 4.349 - 24.38$ 1.833 T = 33.129 $\text{T} = 18.1^{\circ}\text{C}$

CHECK:

$$24.38 + \left[\frac{125}{60} \times 0.125 \times (18.1-16.7)\right] = \frac{775}{60} \times 0.125 \times (33.8-18.1)$$

$$24.7 = 24.7$$

- From Appendix C: $\Delta H_{f}^{0} \text{Al}_{2}\text{O}_{3} = -1676 \text{ kJ}; \quad \Delta H_{f}^{0} \text{Fe}_{2}\text{O}_{3} = -825.5 \text{ kJ}$ (a) for the reaction, $\Delta H = \Delta H_f^0 \text{ Al}_2 \text{ O}_3 - \Delta H_f^0 \text{ Fe}_2 \text{ O}_3 = [-1676 - (-825.5)] \text{ kJ}$ = - 850.5 kJ
 - For the reaction as written, 1 mol Al₂O₃ (102 g) and 2 mol Fe (111.7 g) are formed when (b) 850.5 kJ of heat are evolved. Since these are the only materials present, Q (the heat evolved, 850.5 kJ) must be equal to the sum of (mass x specific heat x Δ T) for the Al₂O₃ and Fe. 850.5 x 10^3 J = 102 g x 0.79 J/g·°C x Δ T + 111.7 g x 0.45 J/g·°C x Δ T $850.5 \times 10^3 = (80.58 + 50.27) \Delta T = 130.9 \Delta T$ $\Delta T = 850.5 \text{ x } 10^3 / 130.9 = 6.5 \text{ x } 10^3 \text{°C}$ Final temperature = $(25 + 6.5 \times 10^3)^\circ$ C = 6.5 x $10^{3\circ}$ C (only approximate; see below)
 - The final temperature is well above the melting point of iron and hence we would expect the (c) iron to melt. However, we should calculate if, after reaching 1535°C (the mp of Fe), there is enough heat (270 J/g) to melt the Fe. let $T_{final} = 1535^{\circ}C$ then $\Delta T = (1535-25)^{\circ}C = 1510^{\circ}C$ $Q = (102 \text{ x } 0.79 \text{ x } 1510) + (111.7 \text{ x } 0.45 \text{ x } 1510) = 200 \text{ x } 10^3 \text{ J}$ hence there are $(850.5 - 200) \times 10^3 \text{ J} = 650.5 \times 10^3 \text{ J}$ still available to melt the Fe. heat to melt 111.7 g Fe = 111.7 g x 270 J/g = 30×10^3 J Therefore there is enough heat to melt the iron and $(650.5 - 30) \times 10^3 \text{ J} (620.5 \times 10^3) \text{ J}$ are

We can also calculate if the Al₂O₃ would be melted. mp of $Al_2O_3 = 2072^{\circ}C$; heat of fusion of $Al_2O_3 = 1071 \text{ J/g}$ Assuming that molten Fe has the same specific heat as solid Fe, we can calculate the amount of additional heat needed to reach the melting point of Al₂O₃. $\Delta T = 2072 - 1535 = 537^{\circ}C$ $Q = [(102 \times 0.79 \times 537) + (111.7 \times 0.45 \times 537)] J$ $= 70 \text{ x} 10^3 \text{ J}$ Hence, after reaching 2072°C, (620 - 70) x $10^3 = 550 \text{ x} 10^3 \text{ J}$ are left. Heat to melt the 102 g of $Al_2O_3 = 102$ g x 1071 J/g = 109 x 10³ J Heat left = $(550 - 109) \times 10^3 \text{ J} = 441 \times 10^3 \text{ J}$ Again, assuming molten Al₂O₃ has the same specific heat as the liquid, we can calculate the approximate final temperature. 441 x 10^3 J = (102 x 0.79 x Δ T) + (111.7 x 0.45 x Δ T) $\Delta T = 441000/130.9 = 3370^{\circ}C$ Final temperature = 3370 + 2072 = 5442°C (5.4 x 10³°C)

When this reaction used to be used for welding rails, it would have been done in the open and much of the heat would have been lost and maybe the Al₂O₃ would not have melted.

11.

left.