CHEM 1105
 ANSWERS TO PROBLEM SET 5

1.

$3 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \mathrm{K} \quad 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{SO}_{2}(\mathrm{~g})$
moles

start:	0.50	0.36	0.68	0.56
change:	-0.12	-0.08	+0.08	+0.08
equilibrium: equilibrium conc (mole/L) $:$	0.38	0.28	0.76	0.64
	$\underline{0.38}$	$\underline{0.28}$	$\underline{0.50}$	$\underline{0.76}$

$$
\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}{\frac{\left[\mathrm{SO}_{2}\right]}{\left[\mathrm{O}_{2}\right]}{ }^{3}}^{2}=\frac{1.52^{2} \times 1.28^{2}}{0.56^{2} \times 0.76^{3}}=27
$$

2.

$\mathrm{Fe}(\mathrm{s})+5 \mathrm{CO}(\mathrm{g}) \mathrm{K} \quad \mathrm{Fe}(\mathrm{CO}) 5(\mathrm{~g})$
moles
start: $-\underline{0.85}-\underline{1.00} 0$ $55.85 \quad 28.00$ $+0.0037$
change: -0.0037 -0.0185
equilibrium: $\frac{0.64}{55.85}$
$\begin{array}{lll}=0.0115 & 0.0172 & 0.0037\end{array}$
equilibrium
conc (mole/L)
$\frac{0.0172}{3.0} \quad \frac{0.0037}{3.0}$

$$
=\quad 0.0057 \quad 0.0012
$$

$$
\mathrm{K}_{\mathrm{C}}=\frac{[\mathrm{Fe}(\mathrm{CO}) 5]}{[\mathrm{CO}]^{5}}=\frac{0.0012}{0.0057^{5}}=2.0 \times 10^{8}
$$

3.

$$
\mathrm{K}_{\mathrm{C}}=\frac{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]} \quad \mathrm{K}_{\mathrm{C}}=0.080 \text { at } 400^{\circ} \mathrm{C} \text { and } 0.41 \text { at } 600^{\circ} \mathrm{C}
$$

Since K_{C} increases as temperature increases, [CO] and [$\mathrm{H}_{2} \mathrm{O}$] must increase and [CO_{2}] and [H_{2}] must decrease as the temperature increases. This means that the equilibrium shifts to the RIGHT (or, the FORWARD reaction is favoured) as the temperature increases. Therefore, the FORWARD reaction is ENDOTHERMIC.
4. Since 6 H for the forward reaction is negative, the forward reaction is EXOTHERMIC.
(a) (1) If the temperature is increased, the equilibrium will shift to the LEFT, i.e. in the direction of the ENDOTHERMIC reaction to use up the heat supplied. The concentrations of SO_{2} and O_{2} will increase while the concentration of SO_{3} will decrease.
(2) K_{C} will get smaller since $\mathrm{K}_{\mathrm{C}}=$ $\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$
(b) The equilibrium will shift to the LEFT to form more SO_{2}. This will result in a decrease in $\left[\mathrm{SO}_{3}\right]$ and an increase in $\left[\mathrm{O}_{2}\right]$.
(c) No. K_{C} only changes if the temperature is changed.
(d) If SO_{3} is added, the equilibrium will shift to the LEFT to use up part of the added SO_{3} and hence the SO_{2} concentration will increase.
5. Addition of CaO will remove some of the CO_{2} by equilibrium (a) and hence the equilibrium (b) will shift to the LEFT to form more CO_{2}. This will result in a decrease in the concentration of CO.

