CHEM 1105

1. $[NaH_2PO_4] = [H_2PO_4^-] = 0.125 M$ $H_2PO_4^- \rightleftharpoons H^+ + HPO_4^{2-}$ molarity initial: 0.125 0 0 change: -X Х Х equilibrium: 0.125 - x = xХ $K_a = [H^+][HPO_4^{2-}] = 6.2 \times 10^{-8} = x^2$ $[H_2PO_4^-]$ 0.125-x Since K_a is small, x is small, and 0.125-x ≈ 0.125 $x^2 = 6.2 \times 10^{-8}$ $x^2 = 7.75 \times 10^{-9}$ 0.125 $x = 8.8 \times 10^{-5} = [H^+]$ pH = 4.1Error in approximation = $8.8 \times 10^{-5} \times 100 = 0.070\%$ 0.125 2. For a buffer, $[H^+] = K_a \times \underline{[Acid]}$ [Conjugate base] The acid is H_3PO_4 and the conjugate base is $H_2PO_4^ K_{\rm a} = \underline{K}_{\rm w} = \underline{1.0 \text{ x } 10^{-14}} = 7.7 \text{ x } 10^{-3}$ $K_{\rm b}$ 1.3 x 10⁻¹² $[H^+] = 7.7 \times 10^{-3} \times 0.30 = 1.2 \times 10^{-2}$ pH = 1.9 0.20 3. molarity $CH_3NH_2 + H_2O \implies CH_3NH_3^+ + HO^$ initial: 0.222 0 0 change: -X Х Х equilibrium: 0.222-x Х Х $K_{\rm b} = [CH_3NH_3^+][HO^-] = x^2_{\rm c} = 5.0 \text{ x } 10^{-4}$ $[CH_3NH_2] = 0.222-x$ Since $K_{\rm b}$ is small, x is small, and 0.222-x \approx 0.222 $x^2 = 5.0 \times 10^{-4}$ $x^2 = 1.11 \times 10^{-4}$ 0.222 x = 1.05 x 10^{-2} = [HO⁻] pOH = 2.0 pH = 14 - pOH = 12.04. $OH^- + C_6H_5NH_3^+ \implies C_6H_5NH_2 + H_2O \quad K = 2.2 \text{ x } 10^9$ For $C_6H_5NH_2 + H_2O \rightleftharpoons C_6H_5NH_3^+ + OH^-$, $K = K_b$ for $C_6H_5NH_2$ K = 1 = 4.55 x 10⁻¹⁰ = $K_{\rm b}$ 2.2×10^9 The conjugate acid of $C_6H_5NH_2$ is $C_6H_5NH_3^+$ Therefore, K_a for C₆H₅NH₃⁺ = 1.0 x 10⁻¹⁴ = 2.2 x 10⁻⁵ 4.55 x 10⁻¹⁰

5. molarity HA \rightleftharpoons H⁺ + A⁻ initial: 0.050 0 0 change: $-\frac{3.5}{100} \ge -0.000175 +0.000175 +0.000175$ equilibrium: 0.050-0.000175 = 0.0498 = 0.000175 = 0.000175(i) [H⁺] = $1.75 \ge 10^{-4}$ pH = 3.8(ii) $K_{\rm a} = (1.75 \ge 10^{-4})^2 = 6.1 \ge 10^{-7}$ 0.0498

6. $pK_b = 5.4$ $K_b = 4.0 \times 10^{-6}$

$$K_{\rm b} = [\underline{\rm BH^+}][\underline{\rm OH^-}] = \underline{\rm x}^2_{-} = 4.0 \text{ x } 10^{-6}$$

[B] 0.10-x

Since $K_{\rm b}$ is small, x is small, and 0.10-x ≈ 0.10 x² = $\frac{4.0 \times 10^{-6}}{0.10}$ x² = 4.0 x 10⁻⁷ x = 6.3 x 10⁻⁴

Percent dissociation = $6.3 \times 10^{-4} \times 100 = 0.63\%$ 0.10

7. The solution of HOC_6H_5 and $NaOC_6H_5$ is a buffer solution. $[H^+] = K_a \ge \frac{[HOC_6H_5]}{[NaOC_6H_5]} = K_a \ge \frac{moles HOC_6H_5}{moles NaOC_6H_5}$

 $= 1.6 \text{ x } 10^{-10} \text{ x } \underline{2.5/94} = 1.4 \text{ x } 10^{-10}$ 3.5/116pH = 9.85

8. The solution of CH₃COONa and CH₃COOH is a buffer solution. $[H^+] = K_a \times \underline{[CH_3COOH]} = K_a \times \underline{moles CH_3COOH}$ $[CH_3COONa] \qquad moles CH_3COONa$

> moles $CH_3COOH = 0.750 L \ge 0.64 mole/L = 0.480$ moles $CH_3COONa = 75.0 g \ge 1 mole = 0.915$ 82.0 g

$$[H^+] = 1.8 \text{ x } 10^{-5} \text{ x } \underline{0.480} = 9.44 \text{ x } 10^{-6} \text{ pH} = 5.0$$

0.915

9. $[H^+] = K_a \ge \frac{\text{moles CH}_3\text{COOH}}{\text{moles CH}_3\text{COONa}}$ $pH = 6.0 \ [H^+] = 1.0 \ge 10^{-6}$

moles $CH_3COOH = 0.0500 L \ge 0.050 mole/L = 0.025$

 $1.0 \ge 10^{-6} = 1.8 \ge 10^{-5} \ge 0.025$ moles CH₃COONa

moles $CH_3COONa = \frac{1.8 \times 10^{-5} \times 0.025}{1.0 \times 10^{-6}} = 0.45$

mass $CH_3COONa = 0.45$ mole x 82.0 g/mole = 37 g

10. NaOH + HF \rightarrow NaF + H₂O moles NaOH = 0.0172 L x 0.155 mole/L = 2.67 x 10⁻³ moles HF = 0.0250 L x 0.200 mole/L = 5.00 x 10⁻³ moles NaF formed = 2.67 x 10⁻³ moles HF left over = (5.00 - 2.67) x 10⁻³ = 2.33 x 10⁻³ A solution of NaF and HF is a buffer solution [H⁺] = $K_a \times [HF] = K_a \times moles HF = 7.2 \times 10^{-4} \times 2.33 \times 10^{-3}$ [NaF] moles NaF 2.67 x 10⁻³

 $= 6.28 \text{ x } 10^{-4} \text{ pH} = 3.2$