CHEM 1105

PROBLEM SET 2

1. Chlorine can be produced by the reaction

 $MnO_2(s) + 4HCl(aq) \rightarrow MnCl_2(aq) + 2H_2O(l) + Cl_2(g)$

- (a) The reaction of 50.0 g of impure MnO_2 with an excess of HCl gave 32.1 g of Cl₂. Assuming the reaction went in 100% yield, calculate the percentage purity of the MnO_2 .
- (b) Calculate the theoretical yield of chlorine from the reaction of 25.0 g of 88.5% MnO_2 with 1.50 litres of 0.635 *M* HCl.
- 2. Ammonia reacts with oxygen as follows:

 $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$

If the percentage yield in this reaction is 86.5%, how many grams of NH_3 are needed to form 13.7 g of H_2O ?

3. Sulphuric acid, H_2SO_4 , may be prepared from FeS_2 by the following sequence of reactions:

 $\begin{array}{rl} 4\mathrm{FeS}_2(s) \ + \ 11\mathrm{O}_2(g) \ \rightarrow \ 2\mathrm{Fe}_2\mathrm{O}_3(s) \ + \ 8\mathrm{SO}_2(g) \\ 2\mathrm{SO}_2(g) \ + \ \mathrm{O}_2(g) \ \rightarrow \ 2\mathrm{SO}_3(g) \\ \mathrm{SO}_3(g) \ + \ \mathrm{H}_2\mathrm{O}(l) \ \rightarrow \ \mathrm{H}_2\mathrm{SO}_4(l) \end{array}$

What mass of FeS₂ is required to prepare 1.00 litre of $H_2SO_4(l)$? The density of $H_2SO_4(l)$ is 1.85 g/mL.

4. When 1.11 g of vanadium is dissolved in HCl, 0.066 g of H_2 is produced. Calculate the value of x for the compound VCl_x produced according to the equation

 $V + xHCl \rightarrow VCl_x + 0.5xH_2$

5. Calculate the number of grams of SF_4 that can be made from 4.00 g of SCl_2 and 2.00 g of NaF by the following reaction:

 $3SCl_2 + 4NaF \rightarrow SF_4 + S_2Cl_2 + 4NaCl$

How many grams of the reactant in excess are left over?

6. A certain compound was found to be 29.95% C, 3.137% H and 66.91% Cl by mass. Calculate the empirical formula of the compound. The molecular weight was found to be 320±5. Calculate the molecular formula and the accurate molecular weight.

7. When 24.0 mL of 0.100 *M* NaOH was reacted with 20.0 mL of H_2SO_4 of unknown molarity, the final solution was 0.0375 *M* in H_2SO_4 . Calculate the molarity of the original H_2SO_4 solution. The equation for the reaction is given below.

 $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O.$

- 8. A 40.0% HNO₃ solution (by mass) has a density of 1.25 g/mL. Calculate the molarity of the solution.
- 9. A 32.0% (by mass) solution of KBr is 3.44 *M*. Calculate the density of the solution (in g/mL).
- 10. Calculate the theoretical yield of B_2H_6 from the reaction of 25.0 g of 85.0% NaBH₄ with 54.0 g of BF₃. The reaction is:

 $3NaBH_4 \ + \ 4BF_3 \ \rightarrow \ 2B_2H_6 \ + \ 3NaBF_4$

11. Calculate the percent purity of a sample of KO_2 if 3.30 g of the sample gave 655 mL of O_2 at STP by the reaction below. The volume of 1 mole of O_2 at STP is 22.4 L.

$$4\mathrm{KO}_2(s) + 2\mathrm{H}_2\mathrm{O}(g) + 4\mathrm{CO}_2(g) \rightarrow 4\mathrm{KHCO}_3(s) + 3\mathrm{O}_2(g)$$