1. Chlorine can be produced by the reaction

$$
\mathrm{MnO}_{2}(s)+4 \mathrm{HCl}(a q) \rightarrow \mathrm{MnCl}_{2}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{Cl}_{2}(g)
$$

(a) The reaction of 50.0 g of impure $\mathrm{MnO}_{2}$ with an excess of HCl gave 32.1 g of $\mathrm{Cl}_{2}$. Assuming the reaction went in $100 \%$ yield, calculate the percentage purity of the $\mathrm{MnO}_{2}$.
(b) Calculate the theoretical yield of chlorine from the reaction of 25.0 g of $88.5 \% \mathrm{MnO}_{2}$ with 1.50 litres of 0.635 M HCl .
2. Ammonia reacts with oxygen as follows:

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

If the percentage yield in this reaction is $86.5 \%$, how many grams of $\mathrm{NH}_{3}$ are needed to form 13.7 g of $\mathrm{H}_{2} \mathrm{O}$ ?
3. Sulphuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, may be prepared from $\mathrm{FeS}_{2}$ by the following sequence of reactions:

$$
\begin{aligned}
4 \mathrm{FeS}_{2}(s)+11 \mathrm{O}_{2}(g) & \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)+8 \mathrm{SO}_{2}(g) \\
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) & \rightarrow 2 \mathrm{SO}_{3}(g) \\
\mathrm{SO}_{3}(g)+\mathrm{H}_{2} \mathrm{O}(l) & \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(l)
\end{aligned}
$$

What mass of $\mathrm{FeS}_{2}$ is required to prepare 1.00 litre of $\mathrm{H}_{2} \mathrm{SO}_{4}(l)$ ? The density of $\mathrm{H}_{2} \mathrm{SO}_{4}(l)$ is $1.85 \mathrm{~g} / \mathrm{mL}$.
4. When 1.11 g of vanadium is dissolved in $\mathrm{HCl}, 0.066 \mathrm{~g}$ of $\mathrm{H}_{2}$ is produced. Calculate the value of $\boldsymbol{x}$ for the compound $\mathrm{VCl}_{x}$ produced according to the equation

$$
\mathrm{V}+x \mathrm{HCl} \rightarrow \mathrm{VCl}_{x}+0.5 x \mathrm{H}_{2}
$$

5. Calculate the number of grams of $\mathrm{SF}_{4}$ that can be made from 4.00 g of $\mathrm{SCl}_{2}$ and 2.00 g of NaF by the following reaction:

$$
3 \mathrm{SCl}_{2}+4 \mathrm{NaF} \rightarrow \mathrm{SF}_{4}+\mathrm{S}_{2} \mathrm{Cl}_{2}+4 \mathrm{NaCl}
$$

How many grams of the reactant in excess are left over?
6. A certain compound was found to be $29.95 \% \mathrm{C}, 3.137 \% \mathrm{H}$ and $66.91 \% \mathrm{Cl}$ by mass. Calculate the empirical formula of the compound. The molecular weight was found to be $320 \pm 5$. Calculate the molecular formula and the accurate molecular weight.
7. When 24.0 mL of 0.100 M NaOH was reacted with 20.0 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ of unknown molarity, the final solution was 0.0375 M in $\mathrm{H}_{2} \mathrm{SO}_{4}$. Calculate the molarity of the original $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution. The equation for the reaction is given below.

$$
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

8. A $40.0 \% \mathrm{HNO}_{3}$ solution (by mass) has a density of $1.25 \mathrm{~g} / \mathrm{mL}$. Calculate the molarity of the solution.
9. A $32.0 \%$ (by mass) solution of KBr is 3.44 M . Calculate the density of the solution (in $\mathrm{g} / \mathrm{mL}$ ).
10. Calculate the theoretical yield of $\mathrm{B}_{2} \mathrm{H}_{6}$ from the reaction of 25.0 g of $85.0 \% \mathrm{NaBH}_{4}$ with 54.0 g of $\mathrm{BF}_{3}$. The reaction is:

$$
3 \mathrm{NaBH}_{4}+4 \mathrm{BF}_{3} \rightarrow 2 \mathrm{~B}_{2} \mathrm{H}_{6}+3 \mathrm{NaBF}_{4}
$$

11. Calculate the percent purity of a sample of $\mathrm{KO}_{2}$ if 3.30 g of the sample gave 655 mL of $\mathrm{O}_{2}$ at STP by the reaction below. The volume of 1 mole of $\mathrm{O}_{2}$ at STP is 22.4 L .

$$
4 \mathrm{KO}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O}(g)+4 \mathrm{CO}_{2}(g) \rightarrow 4 \mathrm{KHCO}_{3}(s)+3 \mathrm{O}_{2}(g)
$$

