CHEM 1105

PROBLEM SET 3 (Gases)

1. A 10.0 litre tank of helium is filled to a pressure of 150.0 atm . How many 1.50 litre toy balloons can be inflated to a pressure of 1.00 atm from the tank? Assume no change in temperature.
2. A gas thermometer contains 250.00 mL of a gas at $0^{\circ} \mathrm{C}$ and 1.00 atm pressure. If the pressure remains at 1.00 atm , how many millilitres will the volume increase for every one degree Celsius that the temperature rises.
3. A container is filled with a gas to a pressure of 2.00 atm at $25^{\circ} \mathrm{C}$.
(i) What pressure will develop within the sealed container if it is warmed to $75^{\circ} \mathrm{C}$?
(ii) At what temperature (in ${ }^{\circ} \mathrm{C}$) will the pressure be 10.0 atm ?
4. A 1.00 litre sample of a gas is collected at $25^{\circ} \mathrm{C}$ and 1.25 atm . What is the pressure of the gas (in mm of Hg) at $200.0^{\circ} \mathrm{C}$ if the volume is 4.00 litre?
5. What volume will 3.00 kg of CO_{2} occupy at $100.0^{\circ} \mathrm{C}$ and 266 torr?
6. What is the density of $\mathrm{N}_{2} \mathrm{O}$ gas at $25^{\circ} \mathrm{C}$ and 0.750 atm ?
7. If the temperature is held constant at $50.0^{\circ} \mathrm{C}$, at what pressure will the density of N_{2} gas be $0.500 \mathrm{~g} / \mathrm{L}$?
8. A gas has a density of $0.572 \mathrm{~g} / \mathrm{L}$ at $90.0^{\circ} \mathrm{C}$ and 380.0 mm of Hg pressure. What is the molecular weight of the gas?
9. A 0.300 g sample of a liquid was vaporized at $150.0^{\circ} \mathrm{C}$. The vapour occupied a volume of 180.0 mL at 0.998 atm . What is the molecular weight of the liquid?
10. Aluminum carbide, $\mathrm{Al}_{4} \mathrm{C}_{3}$, reacts with water to produce methane gas, CH_{4}, and $\mathrm{Al}(\mathrm{OH})_{3}$ as follows:

$$
\mathrm{Al}_{4} \mathrm{C}_{3}+12 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{CH}_{4}+4 \mathrm{Al}(\mathrm{OH})_{3}
$$

(a) What volume of methane, at $20.0^{\circ} \mathrm{C}$ and 0.750 atm , would be obtained by the reaction of 1.50 g of $\mathrm{Al}_{4} \mathrm{C}_{3}$?
(b) What weight of $\mathrm{Al}_{4} \mathrm{C}_{3}$ would yield 487 mL of methane at $45^{\circ} \mathrm{C}$ and 743 torr?
11. In a mixture of CO and CO_{2}, the partial pressures of CO and CO_{2} are 0.200 atm and 0.600 atm , respectively.
(a) What is the total pressure?
(b) What is the mole fraction of each gas in the mixture?
(c) If the mixture occupies 11.6 L at $50.0^{\circ} \mathrm{C}$, what is the total number of moles of gas?
(d) How many grams of each gas does the mixture contain?
12. Calculate the mass, in grams, of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ formed by the reaction of 475 mL of 1.085 M NaOH and 5.50 L of CO_{2} gas at $25^{\circ} \mathrm{C}$ and 815 mm of Hg . The equation for the reaction is:

$$
2 \mathrm{NaOH}(a q)+\mathrm{CO}_{2}(g) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

