PROBLEM SET 5

CHEM 1105

1. In the following system

 $3O_2(g) + 2H_2S(g) \implies 2H_2O(g) + 2SO_2(g)$

in a 500 mL container, the initial number of moles were: $O_2 0.50$; $H_2S 0.36$; $H_2O 0.68$; $SO_2 0.56$. At equilibrium,there was 0.76 mole of H_2O . Calculate

- (a) the number of moles of O_2 , H_2S and SO_2 at equilibrium,
- (b) the equilibrium concentration of all gases, and
- (c) K_{c} .
- 2. Starting with 0.85 g Fe and 1.00 g CO in a 3.0 L vessel, when the system $Fe(s) + 5CO(g) \rightleftharpoons Fe(CO)_5(g)$ reached equilibrium there was 0.64 g of Fe. Calculate K_c for the system.
- 3. For the equilibrium $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$, K_c is 0.080 at 400°C and 0.41 at 600°C. Is the forward reaction endothermic or exothermic? Explain.
- 4. For the equilibrium $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$, ΔH for the forward reaction is negative.
 - (a) If the temperature is increased,
 - (1) how will the system change? Explain in terms of what changes will occur in the concentrations of all gases;
 - (2) will the value of K_c get larger or smaller? Explain.
 - (b) If SO_2 is removed, how will the system change? Explain.
 - (c) If SO_3 is removed, will the value of K_c change?
 - (d) If SO_3 is added, will the SO_2 concentration increase or decrease? Explain.
- 5. Given the following equilibria
 - (a) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$
 - (b) $2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)$

if CaO is added to system (b) in equilibrium, will the concentration of CO increase or decrease? Explain.