1. In the following system

$$
3 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

in a 500 mL container, the initial number of moles were: $\mathrm{O}_{2} 0.50 ; \mathrm{H}_{2} \mathrm{~S} 0.36 ; \mathrm{H}_{2} \mathrm{O} 0.68$;
SO_{2} 0.56. At equilibrium, there was 0.76 mole of $\mathrm{H}_{2} \mathrm{O}$. Calculate
(a) the number of moles of $\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{~S}$ and SO_{2} at equilibrium,
(b) the equilibrium concentration of all gases, and
(c) K_{c}.
2. Starting with 0.85 g Fe and 1.00 g CO in a 3.0 L vessel, when the system
$\mathrm{Fe}(s)+5 \mathrm{CO}(g) \rightleftharpoons \mathrm{Fe}(\mathrm{CO})_{5}(g)$ reached equilibrium there was 0.64 g of Fe . Calculate K_{c} for the system.
3. For the equilibrium $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}), K_{\mathrm{c}}$ is 0.080 at $400^{\circ} \mathrm{C}$ and 0.41 at $600^{\circ} \mathrm{C}$. Is the forward reaction endothermic or exothermic? Explain.
4. For the equilibrium $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g), \Delta H$ for the forward reaction is negative.
(a) If the temperature is increased,
(1) how will the system change? Explain in terms of what changes will occur in the concentrations of all gases;
(2) will the value of K_{c} get larger or smaller? Explain.
(b) If SO_{2} is removed, how will the system change? Explain.
(c) If SO_{3} is removed, will the value of K_{c} change?
(d) If SO_{3} is added, will the SO_{2} concentration increase or decrease? Explain.
5. Given the following equilibria
(a) $\quad \mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
(b) $\quad 2 \mathrm{CO}_{2}(g) \rightleftharpoons 2 \mathrm{CO}(g)+\mathrm{O}_{2}(g)$
if CaO is added to system (b) in equilibrium, will the concentration of CO increase or decrease? Explain.

