1. Calculate the $\left[\mathrm{H}^{+}\right]$and pH of a 0.125 M solution of $\mathrm{NaH}_{2} \mathrm{PO}_{4} . K_{\mathrm{a}}$ for $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ is 6.2×10^{-8}.
2. Calculate the $\left[\mathrm{H}^{+}\right]$and pH of a buffer solution which is $0.30 M$ in $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $0.20 M$ in $\mathrm{KH}_{2} \mathrm{PO}_{4} . K_{\mathrm{b}}$ for $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is 1.3×10^{-12}.
3. Calculate the $\left[\mathrm{OH}^{-}\right]$and pH of a 0.222 M solution of the weak base methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2} . K_{\mathrm{b}}$ for $\mathrm{CH}_{3} \mathrm{NH}_{2}=5.0 \times 10^{-4}$.
4. For the equilibrium $\mathrm{OH}^{-}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O}, K=2.2 \times 10^{9}$. Calculate K_{a} for the acid $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$.
5. A $0.050 M$ solution of an acid HA is 0.35% dissociated. Calculate
(i) the pH of the solution, and
(ii) K_{a} for HA.
6. Calculate the percent dissociation of a base, $B\left(p K_{\mathrm{b}}=5.4\right)$, in a 0.10 M solution.
7. Calculate the pH of a solution containing 2.5 g of phenol, $\mathrm{HOC}_{6} \mathrm{H}_{5}$, and 3.5 g of $\mathrm{NaOC}_{6} \mathrm{H}_{5}$ in 500 mL of solution. K_{a} for phenol $=1.6 \times 10^{-10}$.
8. Calculate the pH of a solution made by adding 75.0 g of $\mathrm{CH}_{3} \mathrm{COONa}$ to 750 mL of 0.64 M $\mathrm{CH}_{3} \mathrm{COOH}$. K_{a} for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5}.
9. What mass of $\mathrm{CH}_{3} \mathrm{COONa}$ must be added to 50.0 mL of $0.50 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ to make a solution of pH 6.0 ?
10. Calculate the pH after 17.2 mL of 0.155 M NaOH has been added to 25.0 mL of $0.200 \mathrm{M} \mathrm{HF} . K_{\mathrm{a}}$ for $\mathrm{HF}=7.2 \times 10^{-4}$.
