1. Complete and balance the following equations for the redox reactions that occur in acidic solution:
(a) $\mathrm{HNO}_{2}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{NO}_{3}^{-}+\mathrm{Mn}^{2+}$
(b) $\mathrm{IO}_{3}^{-}+\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{I}^{-}+\mathrm{N}_{2}$

In each case, identify the oxidizing agent and the reducing agent.
2. In each case, calculate the oxidation number for the underlined element:
(a) $\underline{\mathrm{S}}_{2} \mathrm{O}_{5} \mathrm{Cl}_{2}$
(b) $\mathrm{N}_{2} \mathrm{H}_{4}$
(c) $\mathrm{Ca}_{2} \mathrm{VO}_{4}$
(d) $\mathrm{NO}_{2}{ }^{+}$
(e) $\operatorname{Mg}\left(\mathrm{BF}_{4}\right)_{2}$
3. How many grams of naphthalene, $\mathrm{C}_{10} \mathrm{H}_{8}$, should be dissolved in 300.0 g of nitrobenzene to produce a solution of freezing point $3.00^{\circ} \mathrm{C}$? The freezing point of nitrobenzene is $5.70^{\circ} \mathrm{C}$ and k_{f} for nitrobenzene $=7.00^{\circ} \mathrm{C} / \mathrm{m}$.
4. A solution that contains 22.0 g of ascorbic acid in 100.0 g of water freezes at $-2.33^{\circ} \mathrm{C}$. Calculate the molecular weight of ascorbic acid. k_{f} for water $=1.86^{\circ} \mathrm{C} / \mathrm{m}$.
5. Calculate the molality of commercial muriatic acid, an aqueous solution of HCl which is $37 \% \mathrm{HCl}$ by mass.
6. Calculate the percent by mass of NaCl in a 1.5 molal aqueous solution.
7. Calculate the molality of a 2.0 M solution of LiBH 4 in THF $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$. The density of the solution is $0.896 \mathrm{~g} / \mathrm{mL}$.

